A new result on matrix summability factors of Fourier series
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sulaiman [10] has investigated absolute weighted mean summability theorems for numerical and Fourier series. In the present paper, we have extended the result of Sulaiman to the $|A, p_n|_k$ summability method. Also some new and known results are obtained by using some basic summability methods.
@article{EMJ_2019_10_1_a6,
     author = {\c{S}. Yildiz},
     title = {A new result on matrix summability factors of {Fourier} series},
     journal = {Eurasian mathematical journal},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/}
}
TY  - JOUR
AU  - Ş. Yildiz
TI  - A new result on matrix summability factors of Fourier series
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 80
EP  - 88
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/
LA  - en
ID  - EMJ_2019_10_1_a6
ER  - 
%0 Journal Article
%A Ş. Yildiz
%T A new result on matrix summability factors of Fourier series
%J Eurasian mathematical journal
%D 2019
%P 80-88
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/
%G en
%F EMJ_2019_10_1_a6
Ş. Yildiz. A new result on matrix summability factors of Fourier series. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 80-88. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/

[1] H. Bor, “On two summability methods”, Math. Proc. Cambridge Philos Soc., 97 (1985), 147–149 | DOI | MR | Zbl

[2] E. Cesàro, “Sur la multiplication des sèries”, Bull. Sci. Math., 14 (1890), 114–120

[3] M.T. Cheng, “Summability factors of Fourier series”, Duke Math. J., 15 (1948), 17–27 | DOI | MR | Zbl

[4] H.C. Chow, “On the summability factors of Fourier series”, J. London Math. Soc., 165 (1941), 215–226 | DOI | MR

[5] T.M. Flett, “On an extension of absolute summability and some theorems of Littlewood and Paley”, Proc. Lond. Math. Soc., 7 (1957), 113–141 | DOI | MR | Zbl

[6] G.H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl

[7] F.C. Hasiang, “On $|C,1|$ summability factors of Fourier series at a given point”, Pacific J. Math., 33 (1970), 139–147 | DOI | MR

[8] E. Kogbetliantz, “Sur lès series absolument sommables par la methode des moyennes arithmetiques”, Bull. Sci. Math., 49 (1925), 234–256

[9] G.S. Pandey, “Multipliers for $|C,1|$ summability of Fourier series”, Pacific J. Math., 79 (1978), 177–182 | DOI | MR

[10] W.T. Sulaiman, “On $|\bar{N},p_n|_k$ summability factors of Fourier series”, Portugaliae Math., 45 (1988), 115–124 | MR | Zbl

[11] W.T. Sulaiman, “Inclusion theorems for absolute matrix summability methods of an infinite series, IV”, Indian J. Pure Appl. Math., 34:11 (2003), 1547–1557 | MR | Zbl

[12] W.T. Sulaiman, “Some new factor theorem for absolute summability”, Demonstr. Math., XLVI:1 (2013), 149–156 | MR | Zbl

[13] N. Tanovič-Miller, “On strong summability”, Glas. Mat. Ser III, 14 (34) (1979), 87–97 | MR | Zbl