A new result on matrix summability factors of Fourier series
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 80-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Sulaiman [10] has investigated absolute weighted mean summability theorems for numerical and Fourier series. In the present paper, we have extended the result of Sulaiman to the $|A, p_n|_k$ summability method. Also some new and known results are obtained by using some basic summability methods.
@article{EMJ_2019_10_1_a6,
     author = {\c{S}. Yildiz},
     title = {A new result on matrix summability factors of {Fourier} series},
     journal = {Eurasian mathematical journal},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/}
}
TY  - JOUR
AU  - Ş. Yildiz
TI  - A new result on matrix summability factors of Fourier series
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 80
EP  - 88
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/
LA  - en
ID  - EMJ_2019_10_1_a6
ER  - 
%0 Journal Article
%A Ş. Yildiz
%T A new result on matrix summability factors of Fourier series
%J Eurasian mathematical journal
%D 2019
%P 80-88
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/
%G en
%F EMJ_2019_10_1_a6
Ş. Yildiz. A new result on matrix summability factors of Fourier series. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 80-88. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a6/