On index stability of Noetherian differential operators in anisotropic Sobolev spaces
Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 9-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper index stability is studied for differential operators perturbed by lower order terms. Conditions are established under which lower order terms do not affect the index of Noetherian operators, acting in anisotropic Sobolev spaces on $\mathbb{R}^m$. Obtained result is applied to investigation of Noethericity and index of semi-elliptic operators.
@article{EMJ_2019_10_1_a1,
     author = {A. Darbinyan and A. Tumanyan},
     title = {On index stability of {Noetherian} differential operators in anisotropic {Sobolev} spaces},
     journal = {Eurasian mathematical journal},
     pages = {9--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/}
}
TY  - JOUR
AU  - A. Darbinyan
AU  - A. Tumanyan
TI  - On index stability of Noetherian differential operators in anisotropic Sobolev spaces
JO  - Eurasian mathematical journal
PY  - 2019
SP  - 9
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/
LA  - en
ID  - EMJ_2019_10_1_a1
ER  - 
%0 Journal Article
%A A. Darbinyan
%A A. Tumanyan
%T On index stability of Noetherian differential operators in anisotropic Sobolev spaces
%J Eurasian mathematical journal
%D 2019
%P 9-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/
%G en
%F EMJ_2019_10_1_a1
A. Darbinyan; A. Tumanyan. On index stability of Noetherian differential operators in anisotropic Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 9-15. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/

[1] M.S. Agranovich, “Elliptic singular integro-differential operators”, Uspekhi Mat. Nauk, 20:5(125) (1965), 3–120 (in Russian) | MR | Zbl

[2] M.F. Atiyah, I.M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl

[3] L.A. Bagirov, “Elliptic operators in unbounded domain”, Matem. Sbornik, 86(128):1(9) (1971), 122–139 (in Russian) | MR

[4] A.A. Darbinyan, “On index of semielliptic operators with constant coefficients”, Proceedings of Russian-Armenian (Slavonic) University (Physical, mathematical and natural sciences), v. 2, Yerevan, 2008, 100–105 (in Russian)

[5] A.A. Darbinyan, A.G. Tumanyan, “Necessary and sufficient condition of Noethericity for operators with constant coefficients”, Proceedings of Russian-Armenian (Slavonic) University (Physical, mathematical and natural sciences), v. 2, Yerevan, 2014, 4–14 (in Russian)

[6] G.V. Demidenko, “Quasielliptic operators and Sobolev type equations”, Siberian Mathematical Journal, 49:5 (2008), 842–851 | DOI | MR | Zbl

[7] G.A. Karapetyan, A.A. Darbinyan, “Index of semielliptic operator in $\mathbb{R}^n$”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 42:5 (2007), 33–50 | MR | Zbl

[8] S.S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts in the Mathematical Sciences, 12, Kluwer Academic Publishers Group, Dordrecht, 1996 | DOI | MR

[9] E.M. Muhamadiev, “On the normal solvability of elliptic operators in the spaces of functions on $\mathbb{R}^n$, part II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Zap. Nauchn. Sem. LOMI, 138, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 108–126 (in Russian) | MR

[10] A.G. Tumanyan, “On the invariance of index of semielliptical operator on the scale of anisotropic Sobolev spaces”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 51:4 (2016), 167–178 | MR