Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2019_10_1_a1, author = {A. Darbinyan and A. Tumanyan}, title = {On index stability of {Noetherian} differential operators in anisotropic {Sobolev} spaces}, journal = {Eurasian mathematical journal}, pages = {9--15}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/} }
TY - JOUR AU - A. Darbinyan AU - A. Tumanyan TI - On index stability of Noetherian differential operators in anisotropic Sobolev spaces JO - Eurasian mathematical journal PY - 2019 SP - 9 EP - 15 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/ LA - en ID - EMJ_2019_10_1_a1 ER -
A. Darbinyan; A. Tumanyan. On index stability of Noetherian differential operators in anisotropic Sobolev spaces. Eurasian mathematical journal, Tome 10 (2019) no. 1, pp. 9-15. http://geodesic.mathdoc.fr/item/EMJ_2019_10_1_a1/
[1] M.S. Agranovich, “Elliptic singular integro-differential operators”, Uspekhi Mat. Nauk, 20:5(125) (1965), 3–120 (in Russian) | MR | Zbl
[2] M.F. Atiyah, I.M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl
[3] L.A. Bagirov, “Elliptic operators in unbounded domain”, Matem. Sbornik, 86(128):1(9) (1971), 122–139 (in Russian) | MR
[4] A.A. Darbinyan, “On index of semielliptic operators with constant coefficients”, Proceedings of Russian-Armenian (Slavonic) University (Physical, mathematical and natural sciences), v. 2, Yerevan, 2008, 100–105 (in Russian)
[5] A.A. Darbinyan, A.G. Tumanyan, “Necessary and sufficient condition of Noethericity for operators with constant coefficients”, Proceedings of Russian-Armenian (Slavonic) University (Physical, mathematical and natural sciences), v. 2, Yerevan, 2014, 4–14 (in Russian)
[6] G.V. Demidenko, “Quasielliptic operators and Sobolev type equations”, Siberian Mathematical Journal, 49:5 (2008), 842–851 | DOI | MR | Zbl
[7] G.A. Karapetyan, A.A. Darbinyan, “Index of semielliptic operator in $\mathbb{R}^n$”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 42:5 (2007), 33–50 | MR | Zbl
[8] S.S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts in the Mathematical Sciences, 12, Kluwer Academic Publishers Group, Dordrecht, 1996 | DOI | MR
[9] E.M. Muhamadiev, “On the normal solvability of elliptic operators in the spaces of functions on $\mathbb{R}^n$, part II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Zap. Nauchn. Sem. LOMI, 138, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 108–126 (in Russian) | MR
[10] A.G. Tumanyan, “On the invariance of index of semielliptical operator on the scale of anisotropic Sobolev spaces”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 51:4 (2016), 167–178 | MR