On the connection between first integrals, integral invariants and potentiality of evolutionary equations
Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 82-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using methods of nonlinear analysis, we have established the connection between first integrals and absolute integral invariants of some evolutionary equations similarly to the case of dynamics of finite dimensional systems.
@article{EMJ_2018_9_4_a6,
     author = {V. M. Savchin and S. A. Budochkina and Yake Gondo and A. V. Slavko},
     title = {On the connection between first integrals, integral invariants and potentiality of evolutionary equations},
     journal = {Eurasian mathematical journal},
     pages = {82--90},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a6/}
}
TY  - JOUR
AU  - V. M. Savchin
AU  - S. A. Budochkina
AU  - Yake Gondo
AU  - A. V. Slavko
TI  - On the connection between first integrals, integral invariants and potentiality of evolutionary equations
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 82
EP  - 90
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a6/
LA  - en
ID  - EMJ_2018_9_4_a6
ER  - 
%0 Journal Article
%A V. M. Savchin
%A S. A. Budochkina
%A Yake Gondo
%A A. V. Slavko
%T On the connection between first integrals, integral invariants and potentiality of evolutionary equations
%J Eurasian mathematical journal
%D 2018
%P 82-90
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a6/
%G en
%F EMJ_2018_9_4_a6
V. M. Savchin; S. A. Budochkina; Yake Gondo; A. V. Slavko. On the connection between first integrals, integral invariants and potentiality of evolutionary equations. Eurasian mathematical journal, Tome 9 (2018) no. 4, pp. 82-90. http://geodesic.mathdoc.fr/item/EMJ_2018_9_4_a6/

[1] V. M. Filippov, S. R. Mikhailova, Gondo Yake, “Construction of variational factors for quasilinear second order partial differential equations”, Computer Physics Communications, 126:1–2 (2000), 67–71 | DOI

[2] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398 | DOI

[3] P. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York, 1986

[4] H. Poincaré, Les methodes nouvelles de la mecanique celeste, v. II, Nauka, M., 1972, 999 pp.

[5] V. M. Savchin, Mathematical methods of mechanics of infinite dimensional nonpotential systems, PFU, M., 1991 (in Russian)

[6] V. M. Savchin, S. A. Budochkina, “Hamilton equations for infinite dimensional systems and their equations in variations”, Differ. Equations, 44:4 (2008), 570–573 | DOI

[7] V. G. Vil'ke, Analytical and qualitative methods of mechanics of systems with infinite number of degrees of freedom, MSU, M., 1986 (in Russian)

[8] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Dover Publications, New York, 1944