Some boundary value problems for the Cauchy--Riemann equation in half lens
Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 73-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, the boundary behaviour of the Schwarz-type operator on the half lens $\Omega$ will be discussed and the existence of boundary values at corner points is proved. Finally, two basic boundary value problems, namely, Dirichlet and Neumann problems for analytic functions and more generally the Dirichlet problem for the inhomogeneous Cauchy–Riemann equation in $\Omega$ is investigated.
@article{EMJ_2018_9_3_a5,
author = {N. Taghizadeh and V. Soltani Mohammadi},
title = {Some boundary value problems for the {Cauchy--Riemann} equation in half lens},
journal = {Eurasian mathematical journal},
pages = {73--84},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a5/}
}
TY - JOUR AU - N. Taghizadeh AU - V. Soltani Mohammadi TI - Some boundary value problems for the Cauchy--Riemann equation in half lens JO - Eurasian mathematical journal PY - 2018 SP - 73 EP - 84 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a5/ LA - en ID - EMJ_2018_9_3_a5 ER -
N. Taghizadeh; V. Soltani Mohammadi. Some boundary value problems for the Cauchy--Riemann equation in half lens. Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 73-84. http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a5/