General coupled fixed point theorem for a nonlinear contractive condition in a cone metric space
Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of coupled fixed point theorem has been proved under various contractive condition in a cone metric space. The result is verified with the help of suitable example.
@article{EMJ_2018_9_3_a2,
     author = {Sh. Bhaumik and S. K. Tiwari},
     title = {General coupled fixed point theorem for a nonlinear contractive condition in a cone metric space},
     journal = {Eurasian mathematical journal},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a2/}
}
TY  - JOUR
AU  - Sh. Bhaumik
AU  - S. K. Tiwari
TI  - General coupled fixed point theorem for a nonlinear contractive condition in a cone metric space
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 25
EP  - 32
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a2/
LA  - en
ID  - EMJ_2018_9_3_a2
ER  - 
%0 Journal Article
%A Sh. Bhaumik
%A S. K. Tiwari
%T General coupled fixed point theorem for a nonlinear contractive condition in a cone metric space
%J Eurasian mathematical journal
%D 2018
%P 25-32
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a2/
%G en
%F EMJ_2018_9_3_a2
Sh. Bhaumik; S. K. Tiwari. General coupled fixed point theorem for a nonlinear contractive condition in a cone metric space. Eurasian mathematical journal, Tome 9 (2018) no. 3, pp. 25-32. http://geodesic.mathdoc.fr/item/EMJ_2018_9_3_a2/

[1] M. Abbas, W. Sintunavarat, P. Kumam, “Coupled fixed point in partially ordered G-metric spaces”, Fixed Point Theory Appl., 2012 (2012), 31 | DOI

[2] T.G. Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65:7 (2006), 1379–1393 | DOI | MR | Zbl

[3] D.W. Boyd, J.S.W. Wong, “On nonlinear contractions”, Proc. Am. Math. Soc., 20 (1969), 458–464 | DOI | MR | Zbl

[4] B.S. Choudhury, N. Metiya, “Fixed points of weak contractions in cone metric spaces”, Nonlinear Anal., 72 (2010), 1589–1593 | DOI | MR | Zbl

[5] B.S. Choudhury, N. Metiya, “Fixed point and common fixed point results in ordered cone metric spaces”, An. St. Univ. Ovidius Constanta, 20 (2012), 55–72 | MR | Zbl

[6] B.S. Choudhury, N. Metiya, “The point of coincidence and common fixed point for a pair of mappings in a cone metric spaces”, Comput. Math. Appl., 60 (2010), 1686–1695 | DOI | MR | Zbl

[7] B.S. Choudhury, P. Maity, “Coupled fixed point results in generalized metric spaces”, Mathematical and Computer Modelling, 54:1–2 (2011), 73–79 | DOI | MR | Zbl

[8] K. Deimling, Nonlinear functional analysis, Springer-Verlag, 1985 | MR | Zbl

[9] L.G. Huang, X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 332 (2007), 1468–1476 | DOI | MR | Zbl

[10] D. Ilic, V. Rakocevic, “Common fixed points for maps on cone metric space”, Journal of Mathematical Analysis and Applications, 341 (2008), 876–882 | DOI | MR | Zbl

[11] S. Jankovic, Z. Kadelburg, S. Radenovic, B.E. Rhoades, “Assad-Kirk-Type fixed point theorems for a pair of nonself mappings on cone metric spaces”, Fixed Point Theory Appl., 2009 (2009), 761086, 16 pp. | DOI | MR | Zbl

[12] Z. Kadelburg, S. Radenovic, V. Rakocevic, “A note on the equivalence of some metric and cone metric fixed point results”, Appl. Math. Lett., 24:3 (2011), 370–374 | DOI | MR | Zbl

[13] Z. Kadelburg, S. Radenovic, B. Rosic, “Strict contractive conditions and common fixed point theorems in cone metric spaces”, Fixed Point Theory Appl., 2009 (2009), 173838, 14 pp. | DOI | MR | Zbl

[14] R. Kannan, “Some results on fixed points”, Bulletin of the Calcutta Mathematical Society, 60 (1968), 71–76 | MR | Zbl

[15] R. Kannan, “Some results on fixed points II”, The American Mathematical Monthly, 76 (1969), 405–408 | MR | Zbl

[16] E. Karapinar, “Couple fixed point theorems for nonlinear contractions in cone metric spaces”, Comput. Math. Appl., 59 (2010), 3656–3668 | DOI | MR | Zbl

[17] E. Karapinar, “Some nonunique fixed point theorems of Ciric type on cone metric spaces”, Abstr. Appl. Anal., 2010 (2010), 123094, 14 pp. | DOI | MR | Zbl

[18] E. Karapinar, “Fixed point theorems in cone Banach spaces”, Fixed Point Theory Appl., 2009 (2009), 609281, 9 pp. | DOI | MR | Zbl

[19] V. Lakshmikantham, L. Ciric, “Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces”, Nonlinear Anal., 70 (2009), 4341–4349 | DOI | MR | Zbl

[20] V.L. Nguyen, X.T. Nguyen, “Coupled fixed points in partially ordered metric spaces and application”, Nonlinear Anal., 74 (2011), 983–992 | DOI | MR | Zbl

[21] S. Radenovic, B.E. Rhoades, “Fixed point theorem for two non-self mappings in cone metric spaces”, Computers and Mathematics with Applications, 57 (2009), 1701–1707 | DOI | MR | Zbl

[22] A.C.M. Ran, M.C.B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Am. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl

[23] F. Sabetghadam, H.P. Masiha, A.H. Sanatpour, “Some coupled fixed point theorems in cone metric space”, Fixed Point Theory Appl., 2009 (2009), 125426, 8 pp. | DOI | MR | Zbl