Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 82-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of Morrey-type spaces $M_{p,q,\Omega}^\lambda$, which includes the classical Morrey spaces. We discuss their properties and we prove a Marcinkiewicz-type interpolation theorem. This theorem is then applied to obtaining a Young–O'Neil-type inequality for the convolution operator in Morrey-type spaces.
@article{EMJ_2018_9_2_a8,
     author = {V. I. Burenkov and D. K. Chigambayeva and E. D. Nursultanov},
     title = {Marcinkiewicz-type interpolation theorem and estimates for convolutions for {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {82--88},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a8/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - D. K. Chigambayeva
AU  - E. D. Nursultanov
TI  - Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 82
EP  - 88
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a8/
LA  - en
ID  - EMJ_2018_9_2_a8
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A D. K. Chigambayeva
%A E. D. Nursultanov
%T Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces
%J Eurasian mathematical journal
%D 2018
%P 82-88
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a8/
%G en
%F EMJ_2018_9_2_a8
V. I. Burenkov; D. K. Chigambayeva; E. D. Nursultanov. Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 82-88. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a8/

[1] D.R. Adams, Morrey spaces, Birkhäuser Mathematics, Lecture notes in applied and numerical harmonic analysis, 2015, 124 pp. | DOI | MR

[2] O. Blasco, A. Ruiz, L. Vega, “Non interpolation in Morrey–Campanato and block spaces”, Ann. Scuola Norm. Super. Pisa, 28:1 (1999), 31–40 | MR | Zbl

[3] A.P. Blozinski, “On a convolution theorem for $L_{p,q}$ spaces”, Trans. Amer. Math. Soc., 164 (1972), 255–265 | MR

[4] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl

[5] V.I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl

[6] V.I. Burenkov, D.K. Chigambayeva, E.D. Nursultanov, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Trudy Math. Inst. Steklov, 284, 2014, 97–128 | DOI | MR | Zbl

[7] V.I. Burenkov, D.K. Darbayeva, E.D. Nursultanov, “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Mathematical Journal, 4:1 (2013), 46–53 | MR | Zbl

[8] Russian Acad. Sci. Dokl. Math., 2003 | MR | Zbl

[9] V.I. Burenkov, H.V. Guliyev, “Nessesary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[10] V.I. Burenkov, E.D. Nursultanov, “Description of interpolation spaces for local Morrey-type spaces”, Trudy Math. Inst. Steklov, 269, 2010, 46–56 | DOI | MR | Zbl

[11] V.I. Burenkov, T.V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Trudy Math. Inst. Steklov, 293, 2016, 107–126 | DOI | MR | Zbl

[12] A. Campanato, M.K.V. Murthy, “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Scuola Norm. Super. Pisa, 19 (1965), 87–100 | MR | Zbl

[13] R.A. Kerman, “Convolution theorems with weights”, Trans. Amer. Math. Soc., 280:1 (1983), 207–219 | DOI | MR | Zbl

[14] A.G. Kostyuchenko, E.D. Nursultanov, “On integral operators in $L_p$-spaces”, Fundam. Prikl. Mat., 5:2 (1999), 475–491 | MR | Zbl

[15] P.G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Mathematical Journal, 3:3 (2012), 62–93 | MR | Zbl

[16] P.G. Lemarié-Rieusset, “Multipliers and Morrey spaces”, Potential Analysis, 38:3 (2013), 741–752 | DOI | MR | Zbl

[17] C.B. Morrey, “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR

[18] E.D. Nursultanov, “Net spaces and the Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599 | MR | Zbl

[19] E.D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | MR | Zbl

[20] E.D. Nursultanov, S. Tikhonov, “Convolution inequalities in Lorentz spaces”, J. Fourier Anal. Appl., 17 (2011), 486–505 | DOI | MR | Zbl

[21] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl

[22] J. Peetre, “On the theory of $\mathcal{L}_{p,\lambda}$ spaces”, J. Func. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[23] M.A. Ragusa, “Operators in Morrey type spaces and applications”, Eurasian Mathematical Journal, 3:3 (2012), 94–109 | MR | Zbl

[24] A. Ruiz, L. Vega, “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation on Morrey spaces”, Publ. Mat., Barc., 39 (1995), 405–411 | DOI | MR | Zbl

[25] G. Stampacchia, “$\mathcal{L}_{p,\lambda}$-spaces and interpolation”, Comm. Pure Appl. Math., 17 (1964), 293–306 | DOI | MR | Zbl

[26] V.D. Stepanov, Some topics in the theory of integral convolution operators, Dalnauka, Vladivostok, 2000, 228 pp. | MR