Model-theoretic properties of the \#-companion of a Jonsson set
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 68-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the model theory. The subject of this article is connected with the study of incomplete inductive theories. In particular, model-theoretic properties of Jonsson theories are considered, which are subclasses of inductive theories. This paper considers a fragment of a certain Jonsson subset of a semantic model of a fixed Jonsson theory, and, as a class of models, all models of the given fragment are considered, namely, the paper considers the model-theoretic properties of countable and uncountable categoricity and the properties of elimination of quantifiers of the given fragment's #-companions. Also the properties of #-companions of the fragment's existential formulas are investigated.
@article{EMJ_2018_9_2_a7,
     author = {A. R. Yeshkeyev and M. T. Kasymetova and N. K. Shamatayeva},
     title = {Model-theoretic properties of the \#-companion of a {Jonsson} set},
     journal = {Eurasian mathematical journal},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a7/}
}
TY  - JOUR
AU  - A. R. Yeshkeyev
AU  - M. T. Kasymetova
AU  - N. K. Shamatayeva
TI  - Model-theoretic properties of the \#-companion of a Jonsson set
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 68
EP  - 81
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a7/
LA  - en
ID  - EMJ_2018_9_2_a7
ER  - 
%0 Journal Article
%A A. R. Yeshkeyev
%A M. T. Kasymetova
%A N. K. Shamatayeva
%T Model-theoretic properties of the \#-companion of a Jonsson set
%J Eurasian mathematical journal
%D 2018
%P 68-81
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a7/
%G en
%F EMJ_2018_9_2_a7
A. R. Yeshkeyev; M. T. Kasymetova; N. K. Shamatayeva. Model-theoretic properties of the \#-companion of a Jonsson set. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 68-81. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a7/

[1] J. Barwise, Handbook of mathematical logic, Nauka, Fizmatgiz, M., 1982 (in Russian) | Zbl

[2] J.T. Baldwin, D.W. Kueker, “Algebraically prime models”, Ann. Math. Logic, 20 (1981), 289–330 | DOI | MR | Zbl

[3] C.C. Chang, H.J. Keisler, Model theory, Mir, M., 1977 (in Russian) | MR

[4] D.W. Kueker, “Core structures for theories”, Fundamenta Mathematicae, LXXXIX (1975), 154–171 | MR

[5] A. Robinson, Introduction to model theory and to the metamathematics of algebra, Amsterdam, 1963 (in English) | MR

[6] G.E. Sacks, Saturated model theory, W. A. Benjamin, Reading Mass., 1972 | MR | Zbl

[7] D. Saracino, “Model companion for $\omega$-categorical theories”, Proc. Amer. Math. Soc., 39 (1973), 591–598 | MR | Zbl

[8] V. Weispfenning, “The model-theoretic significance of complemented existential formulas”, The Journal of Symbolic Logic, 46:4 (1981), 843–849 | DOI | MR

[9] A.R. Yeshkeyev, “Jonsson set and some model-theoretical properties”, Bulletin of the Karaganda University. Series math., 74:2 (2014), 53–62

[10] A.R. Yeshkeyev, “On Jonsson sets and some of their properties”, The Bulletin of Symbolic Logic, 21:1 (2015), 99–100

[11] A.R. Yeshkeyev, “Convex fragmens of strongly minimal Jonsson sets”, Bulletin of the Karaganda University. Series math., 77:1 (2015), 67–72

[12] A.R. Yeshkeyev, “Strongly minimal Jonsson sets and their properties”, Bulletin of the Karaganda University. Series math., 80:4 (2015), 47–51

[13] A.R. Yeshkeyev, “The properties of similarity for Jonsson's theories and their models”, Bulletin of the Karaganda University. Series math., 80:4 (2015), 52–60 | MR

[14] A.R. Yeshkeyev, M.T. Kasymetova, “Properties of lattices of the existential formulas of Jonsson fragments”, Bulletin of the Karaganda University. Series math., 79:3 (2015), 25–32

[15] A.R. Yeshkeyev, M.T. Kasymetova, Jonsson theories and their classes of models, Monograph, Publishing house of KSU, Karaganda, 2016 (in Russian)

[16] A.R. Yeshkeyev, O.I. Ulbricht, “JSp cosemetics and JSB property of Abelian groups”, Sib. electron. mod. math., 13 (2016), 861–874 | MR | Zbl

[17] A.R. Yeshkeyev, O.I. Ulbricht, “On lattice of existential formulas for fragment of Jonsson set”, Bulletin of the Karaganda University. Series math., 79:3 (2015), 33–39