On the symbol of nonlocal operators associated with a parabolic diffeomorphism
Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the ellipticity of the symbols of operators associated with parabolic diffeomorphisms of spheres and we show, that if for some smoothness exponent of the Sobolev space the symbol of an operator is invertible, then the symbol is invertible for all exponents of Sobolev spaces.
@article{EMJ_2018_9_2_a4,
     author = {N. R. Izvarina},
     title = {On the symbol of nonlocal operators associated with a parabolic diffeomorphism},
     journal = {Eurasian mathematical journal},
     pages = {34--43},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a4/}
}
TY  - JOUR
AU  - N. R. Izvarina
TI  - On the symbol of nonlocal operators associated with a parabolic diffeomorphism
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 34
EP  - 43
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a4/
LA  - en
ID  - EMJ_2018_9_2_a4
ER  - 
%0 Journal Article
%A N. R. Izvarina
%T On the symbol of nonlocal operators associated with a parabolic diffeomorphism
%J Eurasian mathematical journal
%D 2018
%P 34-43
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a4/
%G en
%F EMJ_2018_9_2_a4
N. R. Izvarina. On the symbol of nonlocal operators associated with a parabolic diffeomorphism. Eurasian mathematical journal, Tome 9 (2018) no. 2, pp. 34-43. http://geodesic.mathdoc.fr/item/EMJ_2018_9_2_a4/

[1] A.B. Antonevich, “Strongly nonlocal boundary value problems for elliptic equations”, Izv. Akad. Nauk SSSR Ser. Mat., 53:1 (1989), 3–24 | MR | Zbl

[2] A.Yu. Savin, B.Yu. Sternin, “Nonlocal elliptic operators for the group of dilations”, Sb. Math., 202:10 (2011), 1505–1536 | DOI | MR | Zbl

[3] A.Yu. Savin, “On the symbol of nonlocal operators in Sobolev spaces”, Differential Equations, 47:6 (2011), 897–900 | DOI | MR | Zbl

[4] A.O. Gel'fond, Calculus of finite differences, Hindustan Publ. Corp., 1971 | MR | Zbl