@article{EMJ_2018_9_1_a6,
author = {N. B. Zhuravlev and A. N. Sokolova},
title = {The estimate of accuracy of the rational approximation of the monodromy operator},
journal = {Eurasian mathematical journal},
pages = {88--91},
year = {2018},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a6/}
}
N. B. Zhuravlev; A. N. Sokolova. The estimate of accuracy of the rational approximation of the monodromy operator. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 88-91. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a6/
[1] B.P. Demidovich, Lectures on mathematical theory of stability, Nauka, M., 1967 | MR
[2] J.K. Hale, Theory of functional differential equations, Springer, New York, 1977 | MR
[3] F. Hartman, Ordinary differential equations, Wiley, New York, 1964 | MR
[4] A.L. Skubachevskii, H.-O. Walther, “On the Floquet multipliers of periodic solutions to nonlinear functional differential equations”, J. Dynam. Differential Equations, 18:2 (2006), 257–355 | DOI | MR
[5] M.M. Vainberg, V.A. Trenogin, Theory of the branching of solutions of nonlinear equations, Nauka, M., 1969 | MR
[6] M.I. Vishik, L.A. Lusternik, “The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations I”, Russian Mathematical Surveys, 15:3 (1960), 1–73 | DOI | MR
[7] N.B. Zhuravlev, “Hyperbolicity criterion for periodic solutions of functional-differential equations with several delays”, Journal of Mathematical Sciences, 153:5 (2008), 683–709 | DOI | MR
[8] N.B. Zhuravlev, “An approximate calculation of the Floquet multipliers for periodic solutions of delay-differential equations”, Proceedings of the 21th Crimean Autumn Mathematical School-Symposium, Spectral and evolution problems, 22, Simferopol, 2012, 76–80