The estimate of accuracy of the rational approximation of the monodromy operator
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 88-91
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of investigation of eigenvalues of the monodromy operator for periodic solutions of nonlinear delay-differential equations. In the case the period of the solution is not commensurate with the delay time, the rational approximation is used. Thus the eigenvalues depend on the perturbation parameter. In this paper, a similar problem for a nonlinear system of ordinary differential equations is considered. Necessary and sufficient conditions for the Lipschitz behaviour of the eigenvalues are obtained.
@article{EMJ_2018_9_1_a6,
author = {N. B. Zhuravlev and A. N. Sokolova},
title = {The estimate of accuracy of the rational approximation of the monodromy operator},
journal = {Eurasian mathematical journal},
pages = {88--91},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a6/}
}
TY - JOUR AU - N. B. Zhuravlev AU - A. N. Sokolova TI - The estimate of accuracy of the rational approximation of the monodromy operator JO - Eurasian mathematical journal PY - 2018 SP - 88 EP - 91 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a6/ LA - en ID - EMJ_2018_9_1_a6 ER -
N. B. Zhuravlev; A. N. Sokolova. The estimate of accuracy of the rational approximation of the monodromy operator. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 88-91. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a6/