Least squares estimator asymptotics for vector autoregressions with deterministic regressors
Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 40-68

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed vector autoregressive model with deterministic exogenous regressors and an autoregressive matrix that has characteristic roots inside the unit circle. The errors are $(2+\epsilon)$-integrable martingale differences with heterogeneous second-order conditional moments. The behavior of the ordinary least squares (OLS) estimator depends on the rate of growth of the exogenous regressors. For bounded or slowly growing regressors we prove asymptotic normality. In case of quickly growing regressors (e.g., polynomial trends) the result is negative: the OLS asymptotics cannot be derived using the conventional scheme and any diagonal normalizer.
@article{EMJ_2018_9_1_a3,
     author = {K. T. Mynbaev},
     title = {Least squares estimator asymptotics for vector autoregressions with deterministic regressors},
     journal = {Eurasian mathematical journal},
     pages = {40--68},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a3/}
}
TY  - JOUR
AU  - K. T. Mynbaev
TI  - Least squares estimator asymptotics for vector autoregressions with deterministic regressors
JO  - Eurasian mathematical journal
PY  - 2018
SP  - 40
EP  - 68
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a3/
LA  - en
ID  - EMJ_2018_9_1_a3
ER  - 
%0 Journal Article
%A K. T. Mynbaev
%T Least squares estimator asymptotics for vector autoregressions with deterministic regressors
%J Eurasian mathematical journal
%D 2018
%P 40-68
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a3/
%G en
%F EMJ_2018_9_1_a3
K. T. Mynbaev. Least squares estimator asymptotics for vector autoregressions with deterministic regressors. Eurasian mathematical journal, Tome 9 (2018) no. 1, pp. 40-68. http://geodesic.mathdoc.fr/item/EMJ_2018_9_1_a3/