Some reverse inequalities on hyperinner product spaces
Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by applying a new definition of a hyperinner product, we establish some reverse Schwarz inequalities on hyperinner product spaces over the real or complex fields which also gives some interesting reverse Schwarz inequalities in the classic inner product spaces.
@article{EMJ_2017_8_4_a9,
     author = {A. Taghavi and V. Darvish and H. M. Nazari},
     title = {Some reverse inequalities on hyperinner product spaces},
     journal = {Eurasian mathematical journal},
     pages = {84--91},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a9/}
}
TY  - JOUR
AU  - A. Taghavi
AU  - V. Darvish
AU  - H. M. Nazari
TI  - Some reverse inequalities on hyperinner product spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 84
EP  - 91
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a9/
LA  - en
ID  - EMJ_2017_8_4_a9
ER  - 
%0 Journal Article
%A A. Taghavi
%A V. Darvish
%A H. M. Nazari
%T Some reverse inequalities on hyperinner product spaces
%J Eurasian mathematical journal
%D 2017
%P 84-91
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a9/
%G en
%F EMJ_2017_8_4_a9
A. Taghavi; V. Darvish; H. M. Nazari. Some reverse inequalities on hyperinner product spaces. Eurasian mathematical journal, Tome 8 (2017) no. 4, pp. 84-91. http://geodesic.mathdoc.fr/item/EMJ_2017_8_4_a9/

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani editore, 1993 | MR

[2] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003 | MR

[3] F. Marty, “Sur une généralisation de la notion de groupe”, IV Congrés des Mathématiciens Scandinaves (Stockholm), 1934, 45–49

[4] A. Taghavi, R. Hosseinzadeh, “A note on dimension of weak hypervector spaces”, Italian J. of Pure and Appl. Math., 33 (2014), 7–14 | MR

[5] A. Taghavi, T. Vougiouklis, R. Hosseinzadeh, “A note on operators on normed finite dimensional weak hypervector spaces”, U.P.B. Sci. Bull., Series A, 74:4 (2012), 103–108 | MR

[6] A. Taghavi, R. Hosseinzadeh, H. Rohi, “Hyperinner product spaces”, Int. Journal of Algebraic Hyperstructures and its Applications, 1:1 (2014), 95–100

[7] A. Taghavi, R. Hosseinzadeh, Hyperinner product spaces II, arXiv: 1601.00888v1

[8] A. Taghavi, H. M. Nazari, V. Darvish, “Some reverse inequalities for matrices on indefinite inner product spaces”, Indagationes Mathematicae, 27:1 (2016), 11–19 | DOI | MR

[9] T. Vougiouklis, “From $H_\nu$-Rings to $H_\nu$-Fields”, Int. Journal of Algebraic Hyperstructures and its Applications, 1:1 (2014), 1–13