Existence of the $n$-th root in finite-dimensional power-associative algebras over reals
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the solvability of equations in finite-dimensional power-associative algebras over $\mathbb{R}$. Necessary and sufficient conditions for the existence of the $n$-th root in a power-associative $\mathbb{R}$-algebra are obtained. Sufficient solvability conditions for a specific class of polynomial equations in a power-associative $\mathbb{R}$-algebra are derived.
@article{EMJ_2017_8_3_a3,
     author = {A. A. Arutyunov and S. E. Zhukovskiy},
     title = {Existence of the $n$-th root in finite-dimensional power-associative algebras over reals},
     journal = {Eurasian mathematical journal},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Existence of the $n$-th root in finite-dimensional power-associative algebras over reals
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 28
EP  - 35
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/
LA  - en
ID  - EMJ_2017_8_3_a3
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A S. E. Zhukovskiy
%T Existence of the $n$-th root in finite-dimensional power-associative algebras over reals
%J Eurasian mathematical journal
%D 2017
%P 28-35
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/
%G en
%F EMJ_2017_8_3_a3
A. A. Arutyunov; S. E. Zhukovskiy. Existence of the $n$-th root in finite-dimensional power-associative algebras over reals. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 28-35. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/

[1] S. Eilenberg, I. Niven, “The fundamental theorem of algebra for quaternions”, Bull. Am. Math. Soc., 509 (1944), 246–248 | DOI | MR

[2] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, International series of monographs in pure and applied mathematics, Pergamon Press, 1968 | MR

[3] J. Milnor, “Some consequences of a theorem of Bott”, Annals of Math., 68:2 (1958), 444–449 | DOI | MR | Zbl

[4] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, American J. of Math., 76:2 (1954), 435–446 | DOI | MR | Zbl

[5] R. D. Schafer, An introduction to nonassociative algebras, Pure and Appl. Math., 22, Academic Press, N.Y., 1966 | MR | Zbl