Existence of the $n$-th root in finite-dimensional power-associative algebras over reals
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 28-35
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to the solvability of equations in finite-dimensional power-associative algebras over $\mathbb{R}$. Necessary and sufficient conditions for the existence of the $n$-th root in a power-associative $\mathbb{R}$-algebra are obtained. Sufficient solvability conditions for a specific class of polynomial equations in a power-associative $\mathbb{R}$-algebra are derived.
@article{EMJ_2017_8_3_a3,
author = {A. A. Arutyunov and S. E. Zhukovskiy},
title = {Existence of the $n$-th root in finite-dimensional power-associative algebras over reals},
journal = {Eurasian mathematical journal},
pages = {28--35},
year = {2017},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/}
}
TY - JOUR AU - A. A. Arutyunov AU - S. E. Zhukovskiy TI - Existence of the $n$-th root in finite-dimensional power-associative algebras over reals JO - Eurasian mathematical journal PY - 2017 SP - 28 EP - 35 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/ LA - en ID - EMJ_2017_8_3_a3 ER -
A. A. Arutyunov; S. E. Zhukovskiy. Existence of the $n$-th root in finite-dimensional power-associative algebras over reals. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 28-35. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a3/
[1] S. Eilenberg, I. Niven, “The fundamental theorem of algebra for quaternions”, Bull. Am. Math. Soc., 509 (1944), 246–248 | DOI | MR
[2] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, International series of monographs in pure and applied mathematics, Pergamon Press, 1968 | MR
[3] J. Milnor, “Some consequences of a theorem of Bott”, Annals of Math., 68:2 (1958), 444–449 | DOI | MR | Zbl
[4] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, American J. of Math., 76:2 (1954), 435–446 | DOI | MR | Zbl
[5] R. D. Schafer, An introduction to nonassociative algebras, Pure and Appl. Math., 22, Academic Press, N.Y., 1966 | MR | Zbl