On precompactness of a set in general local and global Morrey-type spaces
Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 109-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the precompactness of a set in general local Morrey-type spaces and sufficient conditions for the precompactness of a set in general global Morrey-type spaces are obtained.
@article{EMJ_2017_8_3_a10,
     author = {N. A. Bokayev and V. I. Burenkov and D. T. Matin},
     title = {On precompactness of a set in general local and global {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {109--115},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/}
}
TY  - JOUR
AU  - N. A. Bokayev
AU  - V. I. Burenkov
AU  - D. T. Matin
TI  - On precompactness of a set in general local and global Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 109
EP  - 115
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/
LA  - en
ID  - EMJ_2017_8_3_a10
ER  - 
%0 Journal Article
%A N. A. Bokayev
%A V. I. Burenkov
%A D. T. Matin
%T On precompactness of a set in general local and global Morrey-type spaces
%J Eurasian mathematical journal
%D 2017
%P 109-115
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/
%G en
%F EMJ_2017_8_3_a10
N. A. Bokayev; V. I. Burenkov; D. T. Matin. On precompactness of a set in general local and global Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 109-115. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/

[1] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, AIP Conference Proceedings, 3, 2016, 020108, 5 pp. | DOI

[2] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, Vestnyk KarGU, 4 (2016), 18–40

[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[5] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[7] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[8] Acad. Sci. Dokl. Math., 76 (2007) | MR | Zbl

[9] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[10] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR

[11] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolution of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293, 2016, 107–126 | DOI | MR | Zbl

[12] Y. Chen, Y. Ding, “Compactness of commutators for singular integrals on Morrey Spaces”, Canad. J. Math., 64:2 (2012), 257–281 | DOI | MR | Zbl

[13] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators of Riesz potential on Morrey space”, Potential Anal., 30:4 (2009), 301–313 | DOI | MR | Zbl

[14] P. Gorka, H. Rafeiro, “From Arzela–Ascoli to Riesz–Kolmogorov”, Nonlinear analysis, 144 (2016), 23–31 | DOI | MR | Zbl

[15] M. Otelbaev, L. Cend, “To the theorem about the compactess”, Siberian Math. J., 13:4 (1972), 817–822 | MR