Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_3_a10, author = {N. A. Bokayev and V. I. Burenkov and D. T. Matin}, title = {On precompactness of a set in general local and global {Morrey-type} spaces}, journal = {Eurasian mathematical journal}, pages = {109--115}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/} }
TY - JOUR AU - N. A. Bokayev AU - V. I. Burenkov AU - D. T. Matin TI - On precompactness of a set in general local and global Morrey-type spaces JO - Eurasian mathematical journal PY - 2017 SP - 109 EP - 115 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/ LA - en ID - EMJ_2017_8_3_a10 ER -
N. A. Bokayev; V. I. Burenkov; D. T. Matin. On precompactness of a set in general local and global Morrey-type spaces. Eurasian mathematical journal, Tome 8 (2017) no. 3, pp. 109-115. http://geodesic.mathdoc.fr/item/EMJ_2017_8_3_a10/
[1] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, AIP Conference Proceedings, 3, 2016, 020108, 5 pp. | DOI
[2] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, Vestnyk KarGU, 4 (2016), 18–40
[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[5] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl
[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl
[7] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl
[8] Acad. Sci. Dokl. Math., 76 (2007) | MR | Zbl
[9] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl
[10] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR
[11] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolution of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293, 2016, 107–126 | DOI | MR | Zbl
[12] Y. Chen, Y. Ding, “Compactness of commutators for singular integrals on Morrey Spaces”, Canad. J. Math., 64:2 (2012), 257–281 | DOI | MR | Zbl
[13] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators of Riesz potential on Morrey space”, Potential Anal., 30:4 (2009), 301–313 | DOI | MR | Zbl
[14] P. Gorka, H. Rafeiro, “From Arzela–Ascoli to Riesz–Kolmogorov”, Nonlinear analysis, 144 (2016), 23–31 | DOI | MR | Zbl
[15] M. Otelbaev, L. Cend, “To the theorem about the compactess”, Siberian Math. J., 13:4 (1972), 817–822 | MR