Alternative boundedness characteristics for the Hardy--Steklov operator
Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 74-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the notions of fairway functions we give the Tomaselli and Persson–Stepanov type forms of boundedness characterizations for the Hardy–Steklov operators in Lebesgue spaces. The results are alternatives to the Muckenhoupt and Mazya–Rosin type boundedness criteria.
@article{EMJ_2017_8_2_a5,
     author = {E. P. Ushakova},
     title = {Alternative boundedness characteristics for the {Hardy--Steklov} operator},
     journal = {Eurasian mathematical journal},
     pages = {74--96},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/}
}
TY  - JOUR
AU  - E. P. Ushakova
TI  - Alternative boundedness characteristics for the Hardy--Steklov operator
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 74
EP  - 96
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/
LA  - en
ID  - EMJ_2017_8_2_a5
ER  - 
%0 Journal Article
%A E. P. Ushakova
%T Alternative boundedness characteristics for the Hardy--Steklov operator
%J Eurasian mathematical journal
%D 2017
%P 74-96
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/
%G en
%F EMJ_2017_8_2_a5
E. P. Ushakova. Alternative boundedness characteristics for the Hardy--Steklov operator. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 74-96. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/

[1] T. Chen, G. Sinnamon, “Generalized Hardy operators and normalizing measures”, J. Ineq. Appl., 7 (2002), 829–866 | MR | Zbl

[2] S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288 (2015), 877–897 | DOI | MR | Zbl

[3] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig, “An equivalence theorem for integral conditions related to Hardy's inequality”, Real Anal. Exchange, 29:2 (2003/2004), 867–880 | DOI | MR

[4] A. Gogatishvili, J. Lang, “The generalized Hardy operators with kernel and variable integral limits in Banach function spaces”, J. Inequal. Appl., 4 (1999), 1–16 | MR | Zbl

[5] M. L. Goldman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Can. J. Math., 48 (1996), 959–979 | DOI | MR | Zbl

[6] H. P. Heinig, G. Sinnamon, “Mapping properties of integral averaging operators”, Studia Math., 129 (1998), 157–177 | MR | Zbl

[7] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavaletsky Servis, Plzen, 2007 | MR | Zbl

[8] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publ. Co., Inc., River Edge, NJ, 2003 | MR | Zbl

[9] M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and embedding inequalities inequalities of Sobolev type”, Proc. Steklov Inst. Math., 293:1 (2016), 228–254 | DOI | MR | Zbl

[10] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 6:3 (2003), 421–436 | MR | Zbl

[11] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:1–2 (2011), 1021–1038 | DOI | MR | Zbl

[12] L.-E. Persson, V. D. Stepanov, “Weighted integral inequalities with the geometric mean operator”, J. Inequal. Appl., 7 (2002), 727–746 | MR | Zbl

[13] L.-E. Persson, V. D. Stepanov, P. Wall, “Some scales of equivalent weight characterizations of Hardy's inequality: the case $q p$”, Math. Inequal. Appl., 10:2 (2007), 267–279 | MR | Zbl

[14] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Doklady Math., 93:1 (2016), 78–81 | DOI | MR | Zbl

[15] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 2901:5 (2017), 890–912 | DOI | MR

[16] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov integral operators”, Current Problems in Mathematics, 22, Steklov Mathematical Institute of Russian Academy of Sciences, 2016 (in Russian)

[17] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl

[18] V. D. Stepanov, E. P. Ushakova, “On the geometric mean operator with variable limits of integration”, Proc. Steklov Inst. Math., 260 (2008), 254–278 | DOI | MR | Zbl

[19] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl

[20] V. D. Stepanov, E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces”, Banach J. Math. Anal., 4:1 (2010), 28–52 | DOI | MR | Zbl

[21] E. P. Ushakova, “Boundedness criteria for the Hardy–Steklov operator expressed in terms of a fairway function”, Doklady Math., 91:2 (2015), 197–198 | DOI | MR | Zbl