Alternative boundedness characteristics for the Hardy--Steklov operator
Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 74-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the notions of fairway functions we give the Tomaselli and Persson–Stepanov type forms of boundedness characterizations for the Hardy–Steklov operators in Lebesgue spaces. The results are alternatives to the Muckenhoupt and Mazya–Rosin type boundedness criteria.
@article{EMJ_2017_8_2_a5,
     author = {E. P. Ushakova},
     title = {Alternative boundedness characteristics for the {Hardy--Steklov} operator},
     journal = {Eurasian mathematical journal},
     pages = {74--96},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/}
}
TY  - JOUR
AU  - E. P. Ushakova
TI  - Alternative boundedness characteristics for the Hardy--Steklov operator
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 74
EP  - 96
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/
LA  - en
ID  - EMJ_2017_8_2_a5
ER  - 
%0 Journal Article
%A E. P. Ushakova
%T Alternative boundedness characteristics for the Hardy--Steklov operator
%J Eurasian mathematical journal
%D 2017
%P 74-96
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/
%G en
%F EMJ_2017_8_2_a5
E. P. Ushakova. Alternative boundedness characteristics for the Hardy--Steklov operator. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 74-96. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/