Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_2_a5, author = {E. P. Ushakova}, title = {Alternative boundedness characteristics for the {Hardy--Steklov} operator}, journal = {Eurasian mathematical journal}, pages = {74--96}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/} }
E. P. Ushakova. Alternative boundedness characteristics for the Hardy--Steklov operator. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 74-96. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a5/
[1] T. Chen, G. Sinnamon, “Generalized Hardy operators and normalizing measures”, J. Ineq. Appl., 7 (2002), 829–866 | MR | Zbl
[2] S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288 (2015), 877–897 | DOI | MR | Zbl
[3] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig, “An equivalence theorem for integral conditions related to Hardy's inequality”, Real Anal. Exchange, 29:2 (2003/2004), 867–880 | DOI | MR
[4] A. Gogatishvili, J. Lang, “The generalized Hardy operators with kernel and variable integral limits in Banach function spaces”, J. Inequal. Appl., 4 (1999), 1–16 | MR | Zbl
[5] M. L. Goldman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Can. J. Math., 48 (1996), 959–979 | DOI | MR | Zbl
[6] H. P. Heinig, G. Sinnamon, “Mapping properties of integral averaging operators”, Studia Math., 129 (1998), 157–177 | MR | Zbl
[7] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavaletsky Servis, Plzen, 2007 | MR | Zbl
[8] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Publ. Co., Inc., River Edge, NJ, 2003 | MR | Zbl
[9] M. G. Nasyrova, E. P. Ushakova, “Hardy–Steklov operators and embedding inequalities inequalities of Sobolev type”, Proc. Steklov Inst. Math., 293:1 (2016), 228–254 | DOI | MR | Zbl
[10] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc., 6:3 (2003), 421–436 | MR | Zbl
[11] R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:1–2 (2011), 1021–1038 | DOI | MR | Zbl
[12] L.-E. Persson, V. D. Stepanov, “Weighted integral inequalities with the geometric mean operator”, J. Inequal. Appl., 7 (2002), 727–746 | MR | Zbl
[13] L.-E. Persson, V. D. Stepanov, P. Wall, “Some scales of equivalent weight characterizations of Hardy's inequality: the case $q p$”, Math. Inequal. Appl., 10:2 (2007), 267–279 | MR | Zbl
[14] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On weighted Sobolev spaces on the real line”, Doklady Math., 93:1 (2016), 78–81 | DOI | MR | Zbl
[15] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 2901:5 (2017), 890–912 | DOI | MR
[16] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy–Steklov integral operators”, Current Problems in Mathematics, 22, Steklov Mathematical Institute of Russian Academy of Sciences, 2016 (in Russian)
[17] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl
[18] V. D. Stepanov, E. P. Ushakova, “On the geometric mean operator with variable limits of integration”, Proc. Steklov Inst. Math., 260 (2008), 254–278 | DOI | MR | Zbl
[19] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Ineq. Appl., 13:3 (2010), 449–510 | MR | Zbl
[20] V. D. Stepanov, E. P. Ushakova, “On boundedness of a certain class of Hardy–Steklov type operators in Lebesgue spaces”, Banach J. Math. Anal., 4:1 (2010), 28–52 | DOI | MR | Zbl
[21] E. P. Ushakova, “Boundedness criteria for the Hardy–Steklov operator expressed in terms of a fairway function”, Doklady Math., 91:2 (2015), 197–198 | DOI | MR | Zbl