On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions
Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 47-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the characterization problem of $L_v^p-L_{\rho}^r$ weighted inequalities on Lebesgue cones of monotone functions on the half-axis for quasilinear integral operators of iterated type with Oinarov's kernels.
@article{EMJ_2017_8_2_a4,
     author = {V. D. Stepanov and G. E. Shambilova},
     title = {On the boundedness of quasilinear integral operators of iterated type with {Oinarov's} kernels on the cone of monotone functions},
     journal = {Eurasian mathematical journal},
     pages = {47--73},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a4/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - G. E. Shambilova
TI  - On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 47
EP  - 73
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a4/
LA  - en
ID  - EMJ_2017_8_2_a4
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A G. E. Shambilova
%T On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions
%J Eurasian mathematical journal
%D 2017
%P 47-73
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a4/
%G en
%F EMJ_2017_8_2_a4
V. D. Stepanov; G. E. Shambilova. On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 47-73. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a4/