Characteristic determinant of a boundary value problem, which does not have the basis property
Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 40-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a spectral problem for a two-fold differentiation operator with an integral perturbation of boundary conditions of one type which are regular, but not strongly regular. The unperturbed problem has an asymptotically simple spectrum, and its system of eigenfunctions does not form a basis in $L_2$. We construct the characteristic determinant of the spectral problem with an integral perturbation of boundary conditions. We show that the set of kernels of the integral perturbation, under which absence of basis properties of the system of root functions persists, is dense in $L_2$.
@article{EMJ_2017_8_2_a3,
     author = {M. A. Sadybekov and N. S. Imanbaev},
     title = {Characteristic determinant of a boundary value problem, which does not have the basis property},
     journal = {Eurasian mathematical journal},
     pages = {40--46},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a3/}
}
TY  - JOUR
AU  - M. A. Sadybekov
AU  - N. S. Imanbaev
TI  - Characteristic determinant of a boundary value problem, which does not have the basis property
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 40
EP  - 46
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a3/
LA  - en
ID  - EMJ_2017_8_2_a3
ER  - 
%0 Journal Article
%A M. A. Sadybekov
%A N. S. Imanbaev
%T Characteristic determinant of a boundary value problem, which does not have the basis property
%J Eurasian mathematical journal
%D 2017
%P 40-46
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a3/
%G en
%F EMJ_2017_8_2_a3
M. A. Sadybekov; N. S. Imanbaev. Characteristic determinant of a boundary value problem, which does not have the basis property. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 40-46. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a3/

[1] A. S. Makin, “On a nonlocal perturbation of a periodic eigenvalue problem”, Differ. Uravn., 42:4 (2006), 599–602 | DOI | MR | Zbl

[2] A. S. Markus, “On a expansion of the root vectors of weakly perturbed self-adjoint operator”, Dokl. USSR Academy of Sciences, 142:4 (1962), 538–541 | MR | Zbl

[3] N. B. Kerimov, K. R. Mamedov, “On the Riesz basis property of the root functions in certain regular boundary value problems”, Mathematical Notes, 64:3–4 (1998), 483–487 | DOI | MR | Zbl

[4] A. A. Shkalikov, “Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions”, Vestnik Moskov. Univ. Ser. I Mat. Mech., 1982, no. 6, 12–21 | MR | Zbl

[5] V. A. Il'in, L. V. Kritskov, “Properties of spectral expansions corresponding to non-self-adjoint differential operators”, Journal of Mathematical Sciences (New York), 116:5 (2003), 3489–3550 | DOI | MR | Zbl

[6] N. S. Imanbaev, M. A. Sadybekov, “The basis properties of the root functions of loaded differential operators of the second order”, Doklady NAN RK, 2010, no. 2, 11–13

[7] N. S. Imanbaev, M. A. Sadybekov, “Stability of basis property of a type of problems on eigenvalues with nonlocal perturbation of boundary conditions”, Ufa Mathematical Journal, 3:2 (2011), 27–32 | MR

[8] N. S. Imanbaev, “On stability of basis property of root vectors system of the Sturm–Liouville operator with an integral perturbation of conditions in nonstrongly regular Samarskii–Ionkin type problems”, International Journal of Differential Equations, 2015 (2015), 641481, 6 pp. | DOI | MR | Zbl

[9] M. A. Sadybekov, N. S. Imanbaev, “On the basis property of root functions of a periodic problem with an integral perturbation of the boundary condition”, Differential Equations, 48:6 (2012), 896–900 | DOI | MR | Zbl

[10] M. A. Sadybekov, N. S. Imanbaev, “On spectral properties of a periodic problem with an integral perturbation of the boundary condition”, Eurasian Math. J., 4:3 (2013), 53–62 | MR | Zbl

[11] N. S. Imanbaev, “Stability of the basis property of eigenvalue systems of Sturm–Liouville operators with integral boundary condition”, Electronic Journal of Differential Equations, 87 (2016) | MR | Zbl

[12] N. Imanbaev, M. Sadybekov, “Stability of basis property of a periodic problem with nonlocal perturbation of boundary conditions”, AIP Conference Proceedings, 1759, 2016, 020080 | DOI

[13] P. Lang, J. Locker, “Spectral theory of two-point differential operators determined by $D^2$. II. Analysis of case”, J. Math. An. Appl., 146:1 (1990), 148–191 | DOI | MR | Zbl

[14] A. Yu. Mokin, “On a family of initial-boundary value problems for the heat equation”, Differential Equations, 45:1 (2012), 126–141 | DOI | MR