Hardy and Rellich type inequalities on the complex affine group
Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using properties of the fundamental solution of the canonical right-invariant Laplacian, versions of Hardy and Rellich type inequalities are proved on the complex affine group.
@article{EMJ_2017_8_2_a2,
     author = {B. Sabitbek and D. Suragan},
     title = {Hardy and {Rellich} type inequalities on the complex affine group},
     journal = {Eurasian mathematical journal},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a2/}
}
TY  - JOUR
AU  - B. Sabitbek
AU  - D. Suragan
TI  - Hardy and Rellich type inequalities on the complex affine group
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 31
EP  - 39
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a2/
LA  - en
ID  - EMJ_2017_8_2_a2
ER  - 
%0 Journal Article
%A B. Sabitbek
%A D. Suragan
%T Hardy and Rellich type inequalities on the complex affine group
%J Eurasian mathematical journal
%D 2017
%P 31-39
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a2/
%G en
%F EMJ_2017_8_2_a2
B. Sabitbek; D. Suragan. Hardy and Rellich type inequalities on the complex affine group. Eurasian mathematical journal, Tome 8 (2017) no. 2, pp. 31-39. http://geodesic.mathdoc.fr/item/EMJ_2017_8_2_a2/

[1] Adimurthi, A. Sekar, “Role of the fundamental solution in Hardy-Sobolev-type inequalities”, Proc. Roy. Soc. Edinburgh Sect. A, 136:6 (2003), 1111–1130 | DOI | MR

[2] P. Ciatti, M. G. Cowling, F. Ricci, “Hardy and uncertainty inequalities on stratified Lie groups”, Adv. Math., 277 (2015), 365–387 | DOI | MR | Zbl

[3] L. D'Ambrosio, “Hardy-type inequalities related to degenerate elliptic differential operators”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 4:3 (2005), 451–486 | MR | Zbl

[4] D. Danielli, N. Garofalo, N. C. Phuc, “Hardy–Sobolev type inequalities with sharp constants in Carnot–Caratheodory spaces”, Potential Anal., 34:3 (2011), 223–242 | DOI | MR | Zbl

[5] V. Fischer, M. Ruzhansky, Quantization on nilpotent Lie groups, Progress in Mathematics, 314, Birkhauser, 2016, xiii+557 pp. | DOI | MR | Zbl

[6] G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups”, Ark. Mat., 13:2 (1975), 161–207 | DOI | MR | Zbl

[7] Y. Jin, S. Shen, “Weighted Hardy and Rellich inequality on Carnot groups”, Arch. Math. (Basel), 96:3 (2011), 263–271 | DOI | MR | Zbl

[8] P. Niu, H. Zhang, Y. Wang, “Hardy type and Rellich type inequalities on the Heisenberg group”, Proc. Amer. Math. Soc., 129:12 (2001), 3623–3630 | DOI | MR | Zbl

[9] G. Gaudry, P. Sjögren, “Singular integrals on the complex affine group”, Colloq. Math., 75:1 (1998), 133–148 | DOI | MR | Zbl

[10] J. A. Goldstein, I. Kombe, “The Hardy inequality and nonlinear parabolic equations on Carnot groups”, Nonlinear Anal., 69:12 (2008), 4643–4653 | DOI | MR | Zbl

[11] N. Garofalo, E. Lanconelli, “Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation”, Ann. Inst. Fourier (Grenoble), 40:2 (1990), 313–356 | DOI | MR | Zbl

[12] I. Kombe, “Sharp weighted Rellich and uncertainty principle inequalities on Carnot groups”, Commun. Appl. Anal., 14:2 (2010), 251–271 | MR | Zbl

[13] B. Lian, “Some sharp Rellich type inequalities on nilpotent groups and application”, Acta Math. Sci. Ser. B Engl. Ed., 33:1 (2013), 59–74 | DOI | MR | Zbl

[14] F. Rellich, “Halbbeschränkte differentialoperatoren höherer ordnung”, Proceedings of the International Congress of Mathematicians, v. 3, Erven P. Noordhoff N.V., Groningen, 1954, 243–250 ; North-Holland Publishing Co., Amsterdam, 1956 | MR

[15] M. Ruzhansky, D. Suragan, “Layer potentials, Green formulae, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups”, Adv. Math., 308 (2017), 483–528 | DOI | MR | Zbl

[16] M. Ruzhansky, D. Suragan, “Anisotropic $L^2$-weighted Hardy and $L^2$-Caffarelli–Kohn–Nirenberg inequalities”, Commun. Contemp. Math., 2016, 1750014, 12 pp. | MR

[17] M. Ruzhansky, D. Suragan, “On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and p-sub-Laplacian inequalities on stratified groups”, J. Differential Equations, 262 (2017), 1799–1821 | DOI | MR | Zbl

[18] M. Ruzhansky, D. Suragan, “Local Hardy and Rellich inequalities for sums of squares of vector fields”, Adv. Diff. Equations, 22 (2017), 505–540 | MR | Zbl

[19] P. Sjögren, “An estimate for a first-order Riesz operator on the affne group”, Trans. Amer. Math. Soc., 351:8 (1999), 3301–3314 | DOI | MR | Zbl