Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 23-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Modular and norm inequalities are considered on the cone of all nonnegative functions as well as on the cone $\Omega$ of all nonnegative decreasing functions in the weighted Orlicz space. Reduction theorems are proved for the norm of positively homogeneous operator on the cone $\Omega$. We show that it is equivalent to the norm of a certain modified operator on the cone of all nonnegative functions in this space. Analogous results are established for modular inequalities.
@article{EMJ_2017_8_1_a2,
author = {E. G. Bakhtigareeva and M. L. Goldman},
title = {Modular and norm inequalities for operators on the cone of decreasing functions in {Orlicz} space},
journal = {Eurasian mathematical journal},
pages = {23--33},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/}
}
TY - JOUR AU - E. G. Bakhtigareeva AU - M. L. Goldman TI - Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space JO - Eurasian mathematical journal PY - 2017 SP - 23 EP - 33 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/ LA - en ID - EMJ_2017_8_1_a2 ER -
%0 Journal Article %A E. G. Bakhtigareeva %A M. L. Goldman %T Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space %J Eurasian mathematical journal %D 2017 %P 23-33 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/ %G en %F EMJ_2017_8_1_a2
E. G. Bakhtigareeva; M. L. Goldman. Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/