Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space
Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modular and norm inequalities are considered on the cone of all nonnegative functions as well as on the cone $\Omega$ of all nonnegative decreasing functions in the weighted Orlicz space. Reduction theorems are proved for the norm of positively homogeneous operator on the cone $\Omega$. We show that it is equivalent to the norm of a certain modified operator on the cone of all nonnegative functions in this space. Analogous results are established for modular inequalities.
@article{EMJ_2017_8_1_a2,
     author = {E. G. Bakhtigareeva and M. L. Goldman},
     title = {Modular and norm inequalities for operators on the cone of decreasing functions in {Orlicz} space},
     journal = {Eurasian mathematical journal},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/}
}
TY  - JOUR
AU  - E. G. Bakhtigareeva
AU  - M. L. Goldman
TI  - Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space
JO  - Eurasian mathematical journal
PY  - 2017
SP  - 23
EP  - 33
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/
LA  - en
ID  - EMJ_2017_8_1_a2
ER  - 
%0 Journal Article
%A E. G. Bakhtigareeva
%A M. L. Goldman
%T Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space
%J Eurasian mathematical journal
%D 2017
%P 23-33
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/
%G en
%F EMJ_2017_8_1_a2
E. G. Bakhtigareeva; M. L. Goldman. Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a2/

[1] S. Bloom, R. Kerman, “Weighted integral inequalities for operators of Hardy type”, Studia Math., 110:1 (1994), 35–52 | MR | Zbl

[2] S. Bloom, R. Kerman, “Weighted Orlicz space integral inequalities for the Hardy–Littlewood maximal operator”, Studia Math., 110:2 (1994), 149–167 | MR | Zbl

[3] P. Drabek, H. P. Heinig, A. Kufner, “Weighted modular inequalities for monotone functions”, J. Inequal. and Applications, 1 (1997), 183–197 | MR | Zbl

[4] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1990), 145–158 | MR | Zbl

[5] H. P. Heinig, A. Kufner, “Hardy operators on monotone functions and sequences in Orlicz spaces”, J. London Math. Soc., 53:2 (1996), 256–270 | DOI | MR | Zbl

[6] M. Goldman, R. Kerman, “On the principal of duality in Orlicz–Lorentz Spaces”, Function spaces. Differential Operators. Problems of mathematical education, Proc. Intern. Conf. dedicated to 75-th birthday of prof. Kudrjavtsev (Moscow, 1998), v. 1, 1998, 179–183

[7] M. Goldman, “Estimates for restrictions of monotone operators on the cone of decreasing functions in Orlicz spaces”, Mathematical Notes, 100:1 (2016), 24–37 | DOI | MR | Zbl

[8] M. Goldman, “Estimates for the norms of monotone operators on weighted Orlicz–Lorentz classes”, Doklady Mathematics, 94:3 (2016), 627–631 | DOI | Zbl

[9] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl