Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2017_8_1_a1, author = {A. M. Akhtyamov and V. A. Sadovnichy and Ya. T. Sultanaev}, title = {Inverse problem for the diffusion operator with symmetric functions and general boundary conditions}, journal = {Eurasian mathematical journal}, pages = {10--22}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a1/} }
TY - JOUR AU - A. M. Akhtyamov AU - V. A. Sadovnichy AU - Ya. T. Sultanaev TI - Inverse problem for the diffusion operator with symmetric functions and general boundary conditions JO - Eurasian mathematical journal PY - 2017 SP - 10 EP - 22 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a1/ LA - en ID - EMJ_2017_8_1_a1 ER -
%0 Journal Article %A A. M. Akhtyamov %A V. A. Sadovnichy %A Ya. T. Sultanaev %T Inverse problem for the diffusion operator with symmetric functions and general boundary conditions %J Eurasian mathematical journal %D 2017 %P 10-22 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a1/ %G en %F EMJ_2017_8_1_a1
A. M. Akhtyamov; V. A. Sadovnichy; Ya. T. Sultanaev. Inverse problem for the diffusion operator with symmetric functions and general boundary conditions. Eurasian mathematical journal, Tome 8 (2017) no. 1, pp. 10-22. http://geodesic.mathdoc.fr/item/EMJ_2017_8_1_a1/
[1] A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions”, Eurasian Math. J., 3:4 (2012), 5–17 | MR
[2] A. M. Akhtyamov, Identification theory of boundary value problems and its applications, Fizmatlit, M., 2009 (in Russian)
[3] P. A. Binding, H. Volkmer, “Inverse oscillation theory for Sturm–Liouville problems with nonseparated boundary conditions”, Inverse Probl., 23:1 (2007), 343–356 | DOI | MR
[4] P. A. Binding, B. A. Watson, “An inverse nodal problem for two-parameter Sturm–Liouville systems”, Inverse Problems, 25 (2009), 1–19 | DOI | MR
[5] Siberian Math. J., 31:6 (1990), 910–918 | DOI | MR | Zbl
[6] N. J. Guliyev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21 (2005), 1315–1330 | DOI | MR | Zbl
[7] Math. USSR Sb., 186:5 (1995), 661–674 | DOI | MR | Zbl
[8] Math. Sb., 198:11 (2007), 1579–1598 | DOI | DOI | MR | MR | Zbl
[9] A. Kammanee, C. Böckmann, “Boundary value method for inverse Sturm–Liouville problems”, Applied Mathematics and computation, 214 (2009), 342–352 | DOI | MR | Zbl
[10] B.E. Kanguzhin, Uniqueness theorems for spectral analysis of inverse problems with nonseparated boundary conditions, Dep. in VINITI, 1982, 73 pp. (in Russian)
[11] VNU Science Press, Utrecht, 1987 | MR | Zbl | Zbl
[12] Kh. R. Mamedov, F. A. Cetinkaya, “A uniqueness theorem for a Sturm-Liouville equation with spectral parameter in boundary conditions”, Appl. Math. Inf. Sci., 9:2 (2015), 981–988 | MR
[13] V. A. Marchenko, “Certain problems in the theory of second-order differential operators”, Doklady Akad. Nauk SSSR, 72:3 (1950), 457–460 (in Russian) | MR | Zbl
[14] Math. USSR Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl
[15] Birkhäuser, Basel, 1986 | MR | Zbl | Zbl
[16] I. M. Nabiev, A. Sh. Shukyurov, “Solution of inverse problem for the diffusion operator in a symmetric case”, Izv. Saratov. Univ. Ser. Mat. Mekh. Inf., 9:4(1) (2009), 36–40 (in Russian)
[17] v. I, II, 1st ed., Ungar, New York, 1967 | MR | Zbl
[18] E. S. Panakhov, H. Koyunbakan, Ic. Unal, “Reconstruction formula for the potential function of Sturm–Liouville problem with eigenparameter boundary condition”, Inverse Problems in Science and Engineering, 18:1 (2010), 173–180 | DOI | MR | Zbl
[19] Math. USSR Sb., 59:1 (1988), 1–23 | DOI | MR | Zbl | Zbl
[20] O. A. Plaksina, “Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions, II”, Math. Ussr. Sb., 64:1 (1989), 141–160 (in Russian) | DOI | MR
[21] V. A. Sadovnichy, “Uniqueness of the solution of the inverse problem for second-order differential equation with nonseparated boundary conditions, regularized sums of eigenvalues. Factorization of the characteristic determinant”, Dokl. Akad. Nauk SSSR, 206:2 (1972), 293–296 | MR
[22] Doklady Mathematics, 74:3 (2006), 889–892 | DOI | MR
[23] Doklady Mathematics, 79:2 (2009), 169–171 | DOI | MR
[24] V. A. Sadovnichy, Ya. T. Sultanaev, A. M. Akhtyamov, Inverse Sturm–Liouville problems with nonseparated boundary conditions, MSU, M., 2009 (in Russian) | MR
[25] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “General inverse Sturm–Liouville problem with symmetric potential”, Azerbaijan Journal of Mathematics, 5:2 (2015), 96–108 | MR | Zbl
[26] L. A. Sakhnovich, “Inverse problem for differential operators of order $n > 2$ with analytic coefficients”, Mat. Sb., 46(88):1 (1958), 61–76 (in Russian) | MR | Zbl
[27] Functional Analysis and Its Applications, 44:4 (2010), 270–285 | DOI | DOI | MR | MR | Zbl
[28] Sov. Math. Dokl., 11 (1970), 582–586 | MR
[29] A. N. Tikhonov, “On uniqueness of solution of the electroprospecting problem”, Dokl. Akad. Nauk SSSR, 69:6 (1949), 797–800 (in Russian) | MR | Zbl
[30] V. A. Yurko, “The inverse spectral problems for differential operators with Nonseparated Boundary Conditions”, Journal of Mathematical Analysis and Applications, 250 (2000), 266–289 | DOI | MR | Zbl