Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_3_a6, author = {B. Silvestri}, title = {Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. {I}}, journal = {Eurasian mathematical journal}, pages = {53--88}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a6/} }
TY - JOUR AU - B. Silvestri TI - Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. I JO - Eurasian mathematical journal PY - 2016 SP - 53 EP - 88 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a6/ LA - en ID - EMJ_2016_7_3_a6 ER -
B. Silvestri. Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. I. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 53-88. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a6/
[1] N. Bourbaki, General topology, v. 1, 2, Springer-Verlag, 1989
[2] N. Bourbaki, Topological Vector Spaces, Springer-Verlag, 1989
[3] N. Bourbaki, Integration, v. I, II, Springer-Verlag, 2003 | MR
[4] V.I. Burenkov, P. D. Lamberti, “Spectral stability of Dirichlet second order uniformly elliptic operators”, J. Differential Equations, 244:7 (2008), 1712–1740 | DOI | MR | Zbl
[5] V. I. Burenkov, P. D. Lamberti, “Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators”, J. Differential Equations, 233:2 (2007), 345–379 | DOI | MR | Zbl
[6] V. I. Burenkov, P. D. Lamberti, M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain-dependent Neumann problem for the Laplace operator”, Mediterr. J. Math., 4:4 (2007), 435–449 | DOI | MR
[7] W. Chojnacki, “Multiplier algebras, Banach bundles, and one-parameter semigroups”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:2 (1999), 287–322 | MR | Zbl
[8] N. Dunford, J. T. Schwartz, Linear operators, v. 1–3, Wiley Interscience, 1988
[9] J. M. Fell, R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles, v. 1–2, Pure and Applied Mathematics, 126, Academic Press, Inc., Boston, MA, 1988 | MR
[10] G. Gierz, Bundles of topological vector spaces and their duality, Lecture Notes in Mathematics, 955, Springer-Verlag, 1982 | DOI | MR | Zbl
[11] H. Jarchow, Locally Convex Spaces, B. G. Teubner, 1981 | MR | Zbl
[12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1980 | Zbl
[13] T. G. Kurtz, “Extensions of Trotter's operator semigroup approximation theorems”, J. Functional Analysis, 3 (1969), 354–375 | DOI | MR | Zbl
[14] P. D. Lamberti, M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain-dependent Neumann problem for the Laplace operator”, Mediterr. J. Math., 4:4 (2007), 435–449 | DOI | MR | Zbl
[15] M. Lanza de Cristoforis, “Singular perturbation problems in potential theory and applications”, Complex analysis and potential theory, World Sci. Publ., Hackensack, NJ, 2007, 131–139 | DOI | MR | Zbl
[16] M. Lanza de Cristoforis, “Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole, A functional analytic approach”, Analysis (Munich), 28:1 (2008), 63–93 | MR | Zbl
[17] B. Silvestri, “Integral equalities for functions of unbounded spectral operators in Banach spaces”, Dissertationes Math., 464 (2009), 60 pp., arXiv: 0804.3069v2 [math.FA] | DOI | MR | Zbl
[18] B. Silvestri, “Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. II”, Eurasian Math. J., 7:4 (2016) (to appear)
[19] B. Silvestri, “Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. III”, Eurasian Math. J., 8:1 (2017) (to appear)
[20] K. Yosida, Functional Analysis, Springer-Verlag, 1980 | MR | Zbl