Normal extensions of linear operators
Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 17-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_0$ be a densely defined minimal linear operator in a Hilbert space $H$. We prove that if there exists at least one correct extension $L_S$ of $L_0$ with the property $D(L_S ) = D(L^*_S )$, then we can describe all correct extensions $L$ with the property $D(L) = D(L^*)$. We also prove that if $L_0$ is formally normal and there exists at least one correct normal extension $L_N$, then we can describe all correct normal extensions $L$ of $L_0$. As an example, the Cauchy–Riemann operator is considered.
@article{EMJ_2016_7_3_a3,
     author = {B. N. Biyarov},
     title = {Normal extensions of linear operators},
     journal = {Eurasian mathematical journal},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/}
}
TY  - JOUR
AU  - B. N. Biyarov
TI  - Normal extensions of linear operators
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 17
EP  - 32
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/
LA  - en
ID  - EMJ_2016_7_3_a3
ER  - 
%0 Journal Article
%A B. N. Biyarov
%T Normal extensions of linear operators
%J Eurasian mathematical journal
%D 2016
%P 17-32
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/
%G en
%F EMJ_2016_7_3_a3
B. N. Biyarov. Normal extensions of linear operators. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 17-32. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/