Normal extensions of linear operators
Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 17-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_0$ be a densely defined minimal linear operator in a Hilbert space $H$. We prove that if there exists at least one correct extension $L_S$ of $L_0$ with the property $D(L_S ) = D(L^*_S )$, then we can describe all correct extensions $L$ with the property $D(L) = D(L^*)$. We also prove that if $L_0$ is formally normal and there exists at least one correct normal extension $L_N$, then we can describe all correct normal extensions $L$ of $L_0$. As an example, the Cauchy–Riemann operator is considered.
@article{EMJ_2016_7_3_a3,
     author = {B. N. Biyarov},
     title = {Normal extensions of linear operators},
     journal = {Eurasian mathematical journal},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/}
}
TY  - JOUR
AU  - B. N. Biyarov
TI  - Normal extensions of linear operators
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 17
EP  - 32
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/
LA  - en
ID  - EMJ_2016_7_3_a3
ER  - 
%0 Journal Article
%A B. N. Biyarov
%T Normal extensions of linear operators
%J Eurasian mathematical journal
%D 2016
%P 17-32
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/
%G en
%F EMJ_2016_7_3_a3
B. N. Biyarov. Normal extensions of linear operators. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 17-32. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a3/

[1] G. Biriuk, E. A. Coddington, “Normal extensions of unbounded formally normal operators”, J. Math. Mech., 13:4 (1964), 617–634 | MR

[2] Math. Notes, 95:4 (2014), 463–470 | DOI | DOI | MR | Zbl

[3] Differ. Uravn., 30:12 (1994), 2027–2032 | MR | Zbl

[4] Math. Notes, 56:1 (1994), 751–753 | DOI | MR | Zbl

[5] E. A. Coddington, “Formally normal operators having no normal extensions”, Can. J. Math., 17 (1965), 1030–1040 | DOI | MR | Zbl

[6] E. A. Coddington, “Normal extensions of formally normal operators”, Pacific J. Math., 10 (1960), 1203–1209 | DOI | MR | Zbl

[7] Dokl. Akad. Nauk SSSR, 271:6 (1983), 1307–1310 | Zbl

[8] I. N. Parasidis, P. C. Tsekrekos, “Correct and selfadjoint problems for quadratic operators”, Eurasian Math. J., 1:2 (2010), 122–135 | MR | Zbl

[9] I. N. Parasidis, E. Providas, P. C. Tsekrekos, “Factorization of Linear operators and some eigenvalue problems of Spectral operators”, Bull. Bashkir Univ., 17:2 (2012), 830–839 | MR

[10] Amer. Math. Soc. Transl. II. Ser., 62 (1967), 29–175 | DOI | MR

[11] Mat. Zametki, 2:6 (1967), 605–614 | DOI | MR

[12] Am. Math. Soc. Transl., II, Ser., 24 (1963), 107–172 | DOI | MR | Zbl | Zbl