Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space
Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 8-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we estimate the order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space.
@article{EMJ_2016_7_3_a2,
     author = {K. A. Bekmaganbetov and Ye. Toleugazy},
     title = {Order of the orthoprojection widths of the anisotropic {Nikol'skii--Besov} classes in the anisotropic {Lorentz} space},
     journal = {Eurasian mathematical journal},
     pages = {8--16},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/}
}
TY  - JOUR
AU  - K. A. Bekmaganbetov
AU  - Ye. Toleugazy
TI  - Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 8
EP  - 16
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/
LA  - en
ID  - EMJ_2016_7_3_a2
ER  - 
%0 Journal Article
%A K. A. Bekmaganbetov
%A Ye. Toleugazy
%T Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space
%J Eurasian mathematical journal
%D 2016
%P 8-16
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/
%G en
%F EMJ_2016_7_3_a2
K. A. Bekmaganbetov; Ye. Toleugazy. Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 8-16. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/

[1] G. A. Akishev, “Approximation of function classes in spaces with mixed norm”, Sbornik Math., 197:8 (2006), 1121–1144 | DOI | MR | Zbl

[2] G. A. Akishev, “The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces”, Russian Math., 53:2 (2009), 21–29 | DOI | MR | Zbl

[3] A. V. Andrianov, V. N. Temlyakov, “On two methods of generalization of properties of univariate function systems to their tensor product”, Proc. Steklov Inst. Math., 219 (1997), 25–35 | MR | Zbl

[4] K. A. Bekmaganbetov, “About order of approximation of Besov classes in metric of anisotropic Lorentz spaces”, Ufimsk. Mat. Zh., 1:2 (2009), 9–16 (in Russian) | Zbl

[5] K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathrm{pr}}^{\alpha\mathrm{q}}([0,2\pi)^n)$”, Izvestiya: Math., 73:4 (2009), 655–668 | DOI | MR | Zbl

[6] K. A. Bekmaganbetov, E. T. Orazgaliev, “Bernstein–Nikol'skii inequalities and estimates of best approximation in anisotropic Lorentz spaces”, Math. Journal, 15:2 (2015), 32–42 (in Russian)

[7] A. P. Blozinsky, “Multivariate rearrangements and banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR

[8] E. M. Galeev, “Orders of the orthoprojection widths of classes of periodic functions of one and of several variables”, Math. Notes, 43:2 (1988), 110–118 | DOI | MR | Zbl

[9] E. M. Galeev, “Approximation of classes of periodic functions of several variables by nuclear operators”, Math. Notes, 47:3 (1990), 248–254 | DOI | MR | Zbl

[10] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izvestiya: Math., 64:1 (2000), 93–120 | DOI | MR | Zbl

[11] A. S. Romanyuk, “Best approximations and widths of classes of periodic functions of several variables”, Sbornik: Math., 199:2 (2008), 253–275 | DOI | MR | Zbl

[12] A. S. Romanyuk, “Best trigonometric and bilinear approximations of classes of functions of several variables”, Math. Notes, 94:3 (2013), 379–391 | DOI | MR | Zbl

[13] V. N. Temlyakov, “Widths of some classes of functions of several variables”, Soviet Math. Dokl., 26 (1982), 619–622

[14] V. N. Temlyakov, “Approximations of functions with bounded mixed derivative”, Proc. Steklov Inst. Math., 178, 1989, 1–121 | MR

[15] V. N. Temlyakov, “Estimates for the asymptotic characteristics of classes of functions with bounded mixed derivative or difference”, Proc. Steklov Inst. Math., 189, 1990, 161–197 | MR | Zbl