Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_3_a2, author = {K. A. Bekmaganbetov and Ye. Toleugazy}, title = {Order of the orthoprojection widths of the anisotropic {Nikol'skii--Besov} classes in the anisotropic {Lorentz} space}, journal = {Eurasian mathematical journal}, pages = {8--16}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/} }
TY - JOUR AU - K. A. Bekmaganbetov AU - Ye. Toleugazy TI - Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space JO - Eurasian mathematical journal PY - 2016 SP - 8 EP - 16 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/ LA - en ID - EMJ_2016_7_3_a2 ER -
%0 Journal Article %A K. A. Bekmaganbetov %A Ye. Toleugazy %T Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space %J Eurasian mathematical journal %D 2016 %P 8-16 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/ %G en %F EMJ_2016_7_3_a2
K. A. Bekmaganbetov; Ye. Toleugazy. Order of the orthoprojection widths of the anisotropic Nikol'skii--Besov classes in the anisotropic Lorentz space. Eurasian mathematical journal, Tome 7 (2016) no. 3, pp. 8-16. http://geodesic.mathdoc.fr/item/EMJ_2016_7_3_a2/
[1] G. A. Akishev, “Approximation of function classes in spaces with mixed norm”, Sbornik Math., 197:8 (2006), 1121–1144 | DOI | MR | Zbl
[2] G. A. Akishev, “The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces”, Russian Math., 53:2 (2009), 21–29 | DOI | MR | Zbl
[3] A. V. Andrianov, V. N. Temlyakov, “On two methods of generalization of properties of univariate function systems to their tensor product”, Proc. Steklov Inst. Math., 219 (1997), 25–35 | MR | Zbl
[4] K. A. Bekmaganbetov, “About order of approximation of Besov classes in metric of anisotropic Lorentz spaces”, Ufimsk. Mat. Zh., 1:2 (2009), 9–16 (in Russian) | Zbl
[5] K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathrm{pr}}^{\alpha\mathrm{q}}([0,2\pi)^n)$”, Izvestiya: Math., 73:4 (2009), 655–668 | DOI | MR | Zbl
[6] K. A. Bekmaganbetov, E. T. Orazgaliev, “Bernstein–Nikol'skii inequalities and estimates of best approximation in anisotropic Lorentz spaces”, Math. Journal, 15:2 (2015), 32–42 (in Russian)
[7] A. P. Blozinsky, “Multivariate rearrangements and banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR
[8] E. M. Galeev, “Orders of the orthoprojection widths of classes of periodic functions of one and of several variables”, Math. Notes, 43:2 (1988), 110–118 | DOI | MR | Zbl
[9] E. M. Galeev, “Approximation of classes of periodic functions of several variables by nuclear operators”, Math. Notes, 47:3 (1990), 248–254 | DOI | MR | Zbl
[10] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izvestiya: Math., 64:1 (2000), 93–120 | DOI | MR | Zbl
[11] A. S. Romanyuk, “Best approximations and widths of classes of periodic functions of several variables”, Sbornik: Math., 199:2 (2008), 253–275 | DOI | MR | Zbl
[12] A. S. Romanyuk, “Best trigonometric and bilinear approximations of classes of functions of several variables”, Math. Notes, 94:3 (2013), 379–391 | DOI | MR | Zbl
[13] V. N. Temlyakov, “Widths of some classes of functions of several variables”, Soviet Math. Dokl., 26 (1982), 619–622
[14] V. N. Temlyakov, “Approximations of functions with bounded mixed derivative”, Proc. Steklov Inst. Math., 178, 1989, 1–121 | MR
[15] V. N. Temlyakov, “Estimates for the asymptotic characteristics of classes of functions with bounded mixed derivative or difference”, Proc. Steklov Inst. Math., 189, 1990, 161–197 | MR | Zbl