Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_2_a7, author = {M. A. Sadybekov and B. T. Torebek and B. Kh. Turmetov}, title = {Construction of {Green{\textquoteright}s} function of the {Neumann} problem in a ball}, journal = {Eurasian mathematical journal}, pages = {100--105}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/} }
TY - JOUR AU - M. A. Sadybekov AU - B. T. Torebek AU - B. Kh. Turmetov TI - Construction of Green’s function of the Neumann problem in a ball JO - Eurasian mathematical journal PY - 2016 SP - 100 EP - 105 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/ LA - en ID - EMJ_2016_7_2_a7 ER -
M. A. Sadybekov; B. T. Torebek; B. Kh. Turmetov. Construction of Green’s function of the Neumann problem in a ball. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/
[1] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Differential equations of mathematical physics, North-Holland Publ., Amsterdam, 1964, 712 pp. | MR | Zbl
[2] G. Bouligand, G. Giraud, P. Delens, Le problem de la derive oblique en theorie de potential, Hermann edit., P., 1935, 78 pp.
[3] O. D. Kellog, Foundations of potential theory, Frederick Ungar publ. Comp., N.Y., 1970, 384 pp. | MR
[4] S. L. Sobolev, Partial differential equations of mathematical physics, Pergamon Press, London, 1964, 427 pp. | MR | Zbl
[5] A. V. Bitsadze, “Singular integral equations of the 1st kind with Neumann kernels”, Differential Equations, 22:5 (1986), 591–595 | MR
[6] H. Begehr, “Biharmonic Green functions”, Le matematiche, LXI(II) (2006), 395–405 | MR | Zbl
[7] Ying Wang, Liuqing Ye, “Biharmonic Green function and biharmonic Neumann function in a sector”, Complex Variables and Elliptic Equations, 58:1 (2013), 7–22 | DOI | MR | Zbl
[8] Ying Wang, “Tri-harmonic boundary value problems in a sector”, Complex Variables and Elliptic Equations, 59:5 (2014), 732–749 | DOI | MR | Zbl
[9] T. Sh. Kalmenov, B. D. Koshanov, “Representation for the Green function of the Dirichlet problem for polyharmonic equations in a ball”, Siberian Mathematical Journal, 49:3 (2008), 423–428 | DOI | MR | Zbl
[10] T. Sh. Kalmenov, B. D. Koshanov, M. Y. Nemchenko, “Green function representation in the Dirichlet problem for polyharmonic equations in a ball”, Doklady Mathematics, 78:1 (2008), 528–530 | DOI | MR | Zbl
[11] M. A. Sadybekov, B. T. Torebek, B. Kh. Turmetov, “On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle”, Advances in Pure and Applied Mathematics, 6:3 (2015), 163–172 | DOI | MR | Zbl
[12] H. Bateman, Higher transcendental functions, v. 2, Mc-Graw-Hill Book Company Inc., 1953, 414 pp. | MR
[13] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press is an imprint of Elsevier, 2007, 1108 pp. | MR | Zbl