Construction of Green’s function of the Neumann problem in a ball
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation of the Green’s function of the classical Neumann problem for the Poisson equation in the unit ball of arbitrary dimension is given. In constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. It is shown that Green’s function can be represented in terms of elementary functions and its explicit form can be written out. An explicit form of the Neumann kernel was constructed for $n = 4$ and $n = 5$.
@article{EMJ_2016_7_2_a7,
     author = {M. A. Sadybekov and B. T. Torebek and B. Kh. Turmetov},
     title = {Construction of {Green{\textquoteright}s} function of the {Neumann} problem in a ball},
     journal = {Eurasian mathematical journal},
     pages = {100--105},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/}
}
TY  - JOUR
AU  - M. A. Sadybekov
AU  - B. T. Torebek
AU  - B. Kh. Turmetov
TI  - Construction of Green’s function of the Neumann problem in a ball
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 100
EP  - 105
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/
LA  - en
ID  - EMJ_2016_7_2_a7
ER  - 
%0 Journal Article
%A M. A. Sadybekov
%A B. T. Torebek
%A B. Kh. Turmetov
%T Construction of Green’s function of the Neumann problem in a ball
%J Eurasian mathematical journal
%D 2016
%P 100-105
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/
%G en
%F EMJ_2016_7_2_a7
M. A. Sadybekov; B. T. Torebek; B. Kh. Turmetov. Construction of Green’s function of the Neumann problem in a ball. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/

[1] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Differential equations of mathematical physics, North-Holland Publ., Amsterdam, 1964, 712 pp. | MR | Zbl

[2] G. Bouligand, G. Giraud, P. Delens, Le problem de la derive oblique en theorie de potential, Hermann edit., P., 1935, 78 pp.

[3] O. D. Kellog, Foundations of potential theory, Frederick Ungar publ. Comp., N.Y., 1970, 384 pp. | MR

[4] S. L. Sobolev, Partial differential equations of mathematical physics, Pergamon Press, London, 1964, 427 pp. | MR | Zbl

[5] A. V. Bitsadze, “Singular integral equations of the 1st kind with Neumann kernels”, Differential Equations, 22:5 (1986), 591–595 | MR

[6] H. Begehr, “Biharmonic Green functions”, Le matematiche, LXI(II) (2006), 395–405 | MR | Zbl

[7] Ying Wang, Liuqing Ye, “Biharmonic Green function and biharmonic Neumann function in a sector”, Complex Variables and Elliptic Equations, 58:1 (2013), 7–22 | DOI | MR | Zbl

[8] Ying Wang, “Tri-harmonic boundary value problems in a sector”, Complex Variables and Elliptic Equations, 59:5 (2014), 732–749 | DOI | MR | Zbl

[9] T. Sh. Kalmenov, B. D. Koshanov, “Representation for the Green function of the Dirichlet problem for polyharmonic equations in a ball”, Siberian Mathematical Journal, 49:3 (2008), 423–428 | DOI | MR | Zbl

[10] T. Sh. Kalmenov, B. D. Koshanov, M. Y. Nemchenko, “Green function representation in the Dirichlet problem for polyharmonic equations in a ball”, Doklady Mathematics, 78:1 (2008), 528–530 | DOI | MR | Zbl

[11] M. A. Sadybekov, B. T. Torebek, B. Kh. Turmetov, “On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle”, Advances in Pure and Applied Mathematics, 6:3 (2015), 163–172 | DOI | MR | Zbl

[12] H. Bateman, Higher transcendental functions, v. 2, Mc-Graw-Hill Book Company Inc., 1953, 414 pp. | MR

[13] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press is an imprint of Elsevier, 2007, 1108 pp. | MR | Zbl