Construction of Green’s function of the Neumann problem in a ball
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105

Voir la notice de l'article provenant de la source Math-Net.Ru

Representation of the Green’s function of the classical Neumann problem for the Poisson equation in the unit ball of arbitrary dimension is given. In constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. It is shown that Green’s function can be represented in terms of elementary functions and its explicit form can be written out. An explicit form of the Neumann kernel was constructed for $n = 4$ and $n = 5$.
@article{EMJ_2016_7_2_a7,
     author = {M. A. Sadybekov and B. T. Torebek and B. Kh. Turmetov},
     title = {Construction of {Green{\textquoteright}s} function of the {Neumann} problem in a ball},
     journal = {Eurasian mathematical journal},
     pages = {100--105},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/}
}
TY  - JOUR
AU  - M. A. Sadybekov
AU  - B. T. Torebek
AU  - B. Kh. Turmetov
TI  - Construction of Green’s function of the Neumann problem in a ball
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 100
EP  - 105
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/
LA  - en
ID  - EMJ_2016_7_2_a7
ER  - 
%0 Journal Article
%A M. A. Sadybekov
%A B. T. Torebek
%A B. Kh. Turmetov
%T Construction of Green’s function of the Neumann problem in a ball
%J Eurasian mathematical journal
%D 2016
%P 100-105
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/
%G en
%F EMJ_2016_7_2_a7
M. A. Sadybekov; B. T. Torebek; B. Kh. Turmetov. Construction of Green’s function of the Neumann problem in a ball. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/