Construction of Green’s function of the Neumann problem in a ball
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105
Voir la notice de l'article provenant de la source Math-Net.Ru
Representation of the Green’s function of the classical Neumann problem for the Poisson equation in the unit ball of arbitrary dimension is given. In constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. It is shown that Green’s function can be represented in terms of elementary functions and its explicit form can be written out. An explicit form of the Neumann kernel was constructed for $n = 4$ and $n = 5$.
@article{EMJ_2016_7_2_a7,
author = {M. A. Sadybekov and B. T. Torebek and B. Kh. Turmetov},
title = {Construction of {Green{\textquoteright}s} function of the {Neumann} problem in a ball},
journal = {Eurasian mathematical journal},
pages = {100--105},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/}
}
TY - JOUR AU - M. A. Sadybekov AU - B. T. Torebek AU - B. Kh. Turmetov TI - Construction of Green’s function of the Neumann problem in a ball JO - Eurasian mathematical journal PY - 2016 SP - 100 EP - 105 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/ LA - en ID - EMJ_2016_7_2_a7 ER -
M. A. Sadybekov; B. T. Torebek; B. Kh. Turmetov. Construction of Green’s function of the Neumann problem in a ball. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a7/