Young’s inequality for convolutions in Morrey-type spaces
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 92-99

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the classical Young’s inequality for convolutions of functions is proved in the case of the general global Morrey-type spaces. The form of this analogue is different from Young’s inequality for convolutions in the case of the Lebesgue spaces.
@article{EMJ_2016_7_2_a6,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {Young{\textquoteright}s inequality for convolutions in {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - Young’s inequality for convolutions in Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 92
EP  - 99
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/
LA  - en
ID  - EMJ_2016_7_2_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T Young’s inequality for convolutions in Morrey-type spaces
%J Eurasian mathematical journal
%D 2016
%P 92-99
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/
%G en
%F EMJ_2016_7_2_a6
V. I. Burenkov; T. V. Tararykova. Young’s inequality for convolutions in Morrey-type spaces. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 92-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/