Young’s inequality for convolutions in Morrey-type spaces
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 92-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the classical Young’s inequality for convolutions of functions is proved in the case of the general global Morrey-type spaces. The form of this analogue is different from Young’s inequality for convolutions in the case of the Lebesgue spaces.
@article{EMJ_2016_7_2_a6,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {Young{\textquoteright}s inequality for convolutions in {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - Young’s inequality for convolutions in Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 92
EP  - 99
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/
LA  - en
ID  - EMJ_2016_7_2_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T Young’s inequality for convolutions in Morrey-type spaces
%J Eurasian mathematical journal
%D 2016
%P 92-99
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/
%G en
%F EMJ_2016_7_2_a6
V. I. Burenkov; T. V. Tararykova. Young’s inequality for convolutions in Morrey-type spaces. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 92-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a6/

[1] V. I. Burenkov, “Recent progress in the problem of boundedness of the classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 8–27 | MR

[2] V. I. Burenkov, “Recent progress in the problem of boundedness of the classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[3] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[4] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[5] V. I. Burenkov, Y. Sawano, “Necessary and sufficient conditions for the boundedness of classical operators of real analysis in general Morrey-type spaces”, Proceedings of the Symposium on real analysis at the Ibaraki University (2013), 81–90

[6] V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl

[7] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl

[8] H. Rafeiro, N. Samko, S. Samko, “Morrey–Campanato spaces: an overview”, Oper. Theory Adv. Appl., 228, Birkhäuser/Springer, Basel AG, 2013, 293–323 | MR | Zbl

[9] M. A. Ragusa, “Operators in Morrey-type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl

[10] W. Sickel, “Smoothness spaces related to Morrey spaces — a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl

[11] W. Sickel, “Smoothness spaces related to Morrey spaces — a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl