Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_2_a5, author = {D. A. Zakora}, title = {Abstract linear {Volterra} second-order integro-differential equations}, journal = {Eurasian mathematical journal}, pages = {75--91}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a5/} }
D. A. Zakora. Abstract linear Volterra second-order integro-differential equations. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 75-91. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a5/
[1] G. Chen, R. Grimmer, “Integral equations as evolution equations”, Journal of Differential Equations, 45 (1982), 53–74 | DOI | MR | Zbl
[2] W. Desch, W. Schappacher, “Some perturbation results for analytic semigroups”, Math. Ann., 281 (1988), 157–162 | DOI | MR | Zbl
[3] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution eqations, Graduate Texts in Math., 194, Springer-Verlag, 2000 | MR
[4] J. A. Goldstein, Semigroups of linear operators and applications, Vysha shkola, Kiev, 1989 (in Russian) | MR
[5] R. C. Grimmer, “Resolvent operators for integral equations in Banach space”, Transactions of the AMS, 273:4 (1982), 333–349 | DOI | MR | Zbl
[6] M. L. Heard, “An abstract semilinear hyperbolic Volterra integro-differential equation”, Journal of Mathematical Analysis and Applications, 80 (1981), 175–202 | DOI | MR | Zbl
[7] A. A. Ilushin, B. E. Pobedria, Mathematical theory of thermoviscoelasticity, Nauka, M., 1970 (in Russian)
[8] T. Kato, Perturbation theory for linear operators, Mir, M., 1972 (in Russian) | MR | Zbl
[9] N. D. Kopachevsky, E. V. Syomkina, “Linear Volterra integro-differential second-order equations unresolved with respect to the highestderivative”, Eurasian Mathematical Journal, 4:4 (2013), 64–87 | MR | Zbl
[10] S. G. Krein, Linear differential equations in Banach space, Nauka, M., 1967 (in Russian) | MR
[11] A. Lunardi, “Regular solutions for time dependent abstract integro-differential equations with singular kernel”, Journal of Mathematical Analysis and Applications, 130 (1988), 1–21 | DOI | MR | Zbl
[12] J. Prüss, Evolutionary integral equations and applications, Monographs in Math., 87, Birkhäuser Verlag, 1993 | DOI | MR | Zbl
[13] H. Tanabe, Equations of evolution, Pitnam, London, 1979 | MR | Zbl
[14] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, “Functional differential equations in Sobolev spaces and their spectrum analysis”, Sovremennye problemy matematiki i mehaniki. Mathematics, 8, no. 1, 2011 (in Russian)