Continuous dependence of solutions to functional differential equations on the scaling parameter
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 68-74
Voir la notice de l'article provenant de la source Math-Net.Ru
For a functional differential equation with rescaling, we establish the Gårding-type inequality uniform with respect to the scaling parameter $p$. This allows us to study the limit behaviour of solutions to the Dirichlet problem as $p\to1$.
@article{EMJ_2016_7_2_a4,
author = {L. E. Rossovskii},
title = {Continuous dependence of solutions to functional differential equations on the scaling parameter},
journal = {Eurasian mathematical journal},
pages = {68--74},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/}
}
TY - JOUR AU - L. E. Rossovskii TI - Continuous dependence of solutions to functional differential equations on the scaling parameter JO - Eurasian mathematical journal PY - 2016 SP - 68 EP - 74 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/ LA - en ID - EMJ_2016_7_2_a4 ER -
L. E. Rossovskii. Continuous dependence of solutions to functional differential equations on the scaling parameter. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 68-74. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/