Continuous dependence of solutions to functional differential equations on the scaling parameter
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 68-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a functional differential equation with rescaling, we establish the Gårding-type inequality uniform with respect to the scaling parameter $p$. This allows us to study the limit behaviour of solutions to the Dirichlet problem as $p\to1$.
@article{EMJ_2016_7_2_a4,
     author = {L. E. Rossovskii},
     title = {Continuous dependence of solutions to functional differential equations on the scaling parameter},
     journal = {Eurasian mathematical journal},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/}
}
TY  - JOUR
AU  - L. E. Rossovskii
TI  - Continuous dependence of solutions to functional differential equations on the scaling parameter
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 68
EP  - 74
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/
LA  - en
ID  - EMJ_2016_7_2_a4
ER  - 
%0 Journal Article
%A L. E. Rossovskii
%T Continuous dependence of solutions to functional differential equations on the scaling parameter
%J Eurasian mathematical journal
%D 2016
%P 68-74
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/
%G en
%F EMJ_2016_7_2_a4
L. E. Rossovskii. Continuous dependence of solutions to functional differential equations on the scaling parameter. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 68-74. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a4/

[1] V. A. Ambartsumyan, “The theory of fluctuations of surface brightness in the Milky Way”, Dokl. Akad. Nauk SSSR, 44 (1944), 223–226 | MR

[2] L. Gårding, “Dirichlet's problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR

[3] A. J. Hall, G. C. Wake, “A functional differential equation arising in the modeling of cell growth”, J. Austral. Math. Soc. Ser. B, 30 (1989), 424–435 | DOI | MR | Zbl

[4] T. Kato, “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13 (1961), 246–274 | DOI | MR | Zbl

[5] T. Kato, Perturbation theory for linear operators, Springer Verlag, Heidelberg, 1966 | MR | Zbl

[6] T. Kato, J. B. McLeod, “Functional differential equation $\dot{y}=ay(\lambda t)+by(t)$”, Bull. Amer. Math. Soc., 77 (1971), 891–937 | DOI | MR | Zbl

[7] J. L. Lions, “Espaces d'interpolation et domaines de puissances fractionnaires d'operateurs”, J. Math. Soc. Japan, 14 (1962), 233–241 | DOI | MR | Zbl

[8] A. McIntosh, “On the comparability of $A^{1/2}$ and $A^{*1/2}$”, Proc. Amer. Math. Soc., 32 (1972), 430–434 | MR | Zbl

[9] J. R. Ockendon, A. B. Tayler, “The dynamics of a current collection system for an electric locomotive”, Proc. Royal Soc. London A, 322 (1971), 447–468 | DOI

[10] L. E. Rossovskii, “Coerciveness of functional-differential equations”, Math. Notes, 59 (1996), 75–82 | DOI | MR

[11] L. E. Rossovskii, “Boundary value problems for elliptic functional-differential equations with dilatations and compressions of the arguments”, Trans. Moscow Math. Soc., 62 (2001), 185–212 | MR | Zbl

[12] L. E. Rossovskii, “On a class of sectorial functional-differential operators”, Differ. Equ., 48 (2012), 234–245 | DOI | MR | Zbl

[13] A. L. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations”, J. of Differential Equations, 63 (1986), 332–361 | DOI | MR

[14] A. L. Skubachevskii, Elliptic functional-differential equations and applications, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[15] M. I. Vishik, “On strongly elliptic systems of differential equations”, Mat. Sb., 29 (1951), 615–676 | MR | Zbl