On almost binarity in weakly circularly minimal structures
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 38-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $\aleph_0$-categorical non-$1$-transitive weakly circularly minimal theories of convexity rank $1$ are almost binary.
@article{EMJ_2016_7_2_a2,
     author = {B. Sh. Kulpeshov},
     title = {On almost binarity in weakly circularly minimal structures},
     journal = {Eurasian mathematical journal},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On almost binarity in weakly circularly minimal structures
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 38
EP  - 49
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/
LA  - en
ID  - EMJ_2016_7_2_a2
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On almost binarity in weakly circularly minimal structures
%J Eurasian mathematical journal
%D 2016
%P 38-49
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/
%G en
%F EMJ_2016_7_2_a2
B. Sh. Kulpeshov. On almost binarity in weakly circularly minimal structures. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 38-49. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/

[1] A. B. Altayeva, B. Sh. Kulpeshov, “Equivalence-generating formulas in weakly circularly minimal structures”, Reports of the National Academy of Sciences of the Republic of Kazakhstan, 2014, no. 2, 5–10

[2] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl

[3] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, The Journal of Symbolic Logic, 66 (2001), 1382–1414 | DOI | MR | Zbl

[4] M. Bhattacharjee, H. D. Macpherson, R. G. Möller, P. M. Neumann, Notes on infinite permutation groups, Lecture Notes in Mathematics, 1698, Springer, 1998, 202 pp. | DOI | MR | Zbl

[5] B. Sh. Kulpeshov, H. D. Macpherson, “Minimality conditions on circularly ordered structures”, Mathematical Logic Quarterly, 51 (2005), 377–399 | DOI | MR | Zbl

[6] B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63 (1998), 1511–1528 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, “The property of being binary for $\aleph_0$-categorical weakly o-minimal theories”, Algebra and Logic, 44:4 (2005), 256–263 | DOI | MR | Zbl

[8] B. Sh. Kulpeshov, “Binarity of $\aleph_0$-categorical weakly o-minimal theories of convexity rank 1”, Siberian Electronic Mathematical Reports, 3 (2006), 185–196 | MR | Zbl

[9] B. Sh. Kulpeshov, “On indiscernibility of a set in circularly ordered structures”, Siberian Electronic Mathematical Reports, 12 (2015), 255–266 | Zbl

[10] H. D. Macpherson, C. Steinhorn, “On variants of o-minimality”, Annals of Pure and Applied Logic, 79 (1996), 165–209 | DOI | MR | Zbl

[11] A. Pillay, C. Steinhorn, “Definable sets in ordered structures I”, Transactions of the American Mathematical Society, 295 (1986), 565–592 | DOI | MR | Zbl