On almost binarity in weakly circularly minimal structures
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 38-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $\aleph_0$-categorical non-$1$-transitive weakly circularly minimal theories of convexity rank $1$ are almost binary.
@article{EMJ_2016_7_2_a2,
     author = {B. Sh. Kulpeshov},
     title = {On almost binarity in weakly circularly minimal structures},
     journal = {Eurasian mathematical journal},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On almost binarity in weakly circularly minimal structures
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 38
EP  - 49
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/
LA  - en
ID  - EMJ_2016_7_2_a2
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On almost binarity in weakly circularly minimal structures
%J Eurasian mathematical journal
%D 2016
%P 38-49
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/
%G en
%F EMJ_2016_7_2_a2
B. Sh. Kulpeshov. On almost binarity in weakly circularly minimal structures. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 38-49. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a2/