Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case
Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 19-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain a special integral representation of functions with a set of multi-indices and use it to prove embedding theorems for multianisotropic spaces in three-dimensional case.
@article{EMJ_2016_7_2_a1,
     author = {G. A. Karapetyan},
     title = {Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case},
     journal = {Eurasian mathematical journal},
     pages = {19--37},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a1/}
}
TY  - JOUR
AU  - G. A. Karapetyan
TI  - Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 19
EP  - 37
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a1/
LA  - en
ID  - EMJ_2016_7_2_a1
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%T Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case
%J Eurasian mathematical journal
%D 2016
%P 19-37
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a1/
%G en
%F EMJ_2016_7_2_a1
G. A. Karapetyan. Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 19-37. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a1/

[1] O. V. Besov, “On coercitivity in nonisotropic Sobolev spaces”, Mathematics of the USSR-Sbornik, 2:4 (1967), 521–534 (in Russian) | DOI

[2] v. 1, 2, John Wiley and sons, New York, 1979 | MR | Zbl | Zbl

[3] V. P. Il'in, “Integral representations of differentiable functions and their application to questions of continuation of functions of classes $W_p^l(G)$”, Siberian Mathematical Journal, 8:3 (1967), 421–432 | DOI | MR

[4] G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces on a plane with one vertex of anisotropicity”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 51:6 (2016) (to appear) | Zbl

[5] S. M. Nikol'skii, “On a problem of S. L. Sobolev”, Siberian Mathematical Journal, 3:6 (1962) (in Russian) | MR

[6] Y. G. Reshetnyak, “Some integral representations of differentiable functions”, Siberian Mathematical Journal, 12:2 (1971), 299–307 | DOI | MR

[7] K. T. Smith, “Inequalities for formally positive integro-differential forms”, Bull. Amer. Math., 1961, 368–370 | DOI | MR | Zbl

[8] Amer. Math. Soc. Transl., 34:2 (1963), 39–68 | DOI | Zbl | Zbl

[9] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Nauka, M., 1988 (in Russian) | MR