Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2016_7_2_a0, author = {B. Halim and A. Senouci}, title = {Equivalent quasi-norms involving differences and moduli of continuity in anisotropic {Nikol{\textquoteright}skii--Besov} spaces}, journal = {Eurasian mathematical journal}, pages = {7--18}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a0/} }
TY - JOUR AU - B. Halim AU - A. Senouci TI - Equivalent quasi-norms involving differences and moduli of continuity in anisotropic Nikol’skii--Besov spaces JO - Eurasian mathematical journal PY - 2016 SP - 7 EP - 18 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a0/ LA - en ID - EMJ_2016_7_2_a0 ER -
%0 Journal Article %A B. Halim %A A. Senouci %T Equivalent quasi-norms involving differences and moduli of continuity in anisotropic Nikol’skii--Besov spaces %J Eurasian mathematical journal %D 2016 %P 7-18 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a0/ %G en %F EMJ_2016_7_2_a0
B. Halim; A. Senouci. Equivalent quasi-norms involving differences and moduli of continuity in anisotropic Nikol’skii--Besov spaces. Eurasian mathematical journal, Tome 7 (2016) no. 2, pp. 7-18. http://geodesic.mathdoc.fr/item/EMJ_2016_7_2_a0/
[1] N. Azzouz, V. I. Burenkov, A. Senouci, “A weighted Hardy-type inequality for $0 p 1$ with sharp constant”, Mathematical inequalities and Applications, 18:2 (2015), 787–799 | DOI | MR | Zbl
[2] O. V. Besov, V. P. IL'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, 1st Edition, Nauka, M., 1975 (in Russian) ; 2nd Edition, Nauka, M., 1996 (in Russian); English transl.: v. 1, 2, 1st edition, Wiley, Chichester, 1979 | MR | Zbl | Zbl
[3] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Equivalent quasi-norms involving differences and moduli of continuity”, Journal of complex variables and elliptic equations, 55:8–10 (2010), 759–769 | DOI | MR | Zbl
[4] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart–Leipzig, 1997 | MR
[5] V. I. Burenkov, M. L. Goldman, Solutions of exercises on the topics: generalized Minkowski's inequality. Hardy's inequality, Peoples' Freindship University of Russia, M., 1990 (in Russian)
[6] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, 1st Edition, Nauka, M., 1969 (Russian) ; 2nd Edition, Nauka, M., 1977 (Russian); English Transl.: 1st Edition, Springer, Berlin, 1975 | MR
[7] A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0 p 1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2008), 111–116
[8] H. Triebel, Theory of functions spaces, v. II, Birkhäuser, Basel–Boston–Stuttgart, 1992 | MR