Hardy-type inequalities for the fractional integral operator in $q$-analysis
Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 84-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the validity of a certian Hardy-type inequality involving $q$-integrals.
@article{EMJ_2016_7_1_a6,
     author = {S. Shaimardan},
     title = {Hardy-type inequalities for the fractional integral operator in $q$-analysis},
     journal = {Eurasian mathematical journal},
     pages = {84--99},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a6/}
}
TY  - JOUR
AU  - S. Shaimardan
TI  - Hardy-type inequalities for the fractional integral operator in $q$-analysis
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 84
EP  - 99
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a6/
LA  - en
ID  - EMJ_2016_7_1_a6
ER  - 
%0 Journal Article
%A S. Shaimardan
%T Hardy-type inequalities for the fractional integral operator in $q$-analysis
%J Eurasian mathematical journal
%D 2016
%P 84-99
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a6/
%G en
%F EMJ_2016_7_1_a6
S. Shaimardan. Hardy-type inequalities for the fractional integral operator in $q$-analysis. Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 84-99. http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a6/

[1] A.M. Abylaeva, M.Zh. Omirbek, “A weighted estimate for an integral operator with a logarithmic singularity”, Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat., 2005, no. 1, 38-47 (Russian) | MR

[2] R.P. Agarwal, “Certain fractional q-integrals and $q$-derivatives”, Proc. Camb. Phil. Soc., 66 (1969), 365-370 | DOI | MR | Zbl

[3] W.A. Al-Salam, “Some fractional $q$-integrals and $q$-derivatives”, Proc. Edinb. Math. Soc., 2 (1966/1967), 135-140 | DOI | MR

[4] M. H. Annaby, Z.S. Mansour, $q$-fractional calculus and equations, Springer, Heidelberg, 2012 | MR | Zbl

[5] A.O. Baiaristanov, S. Shaimardan, A. Temirkhanova, “Weighted Hardy inequalities in quantum analysis”, Vestinik KarGU. Mathematics series, 2:70 (2013), 35-45 (in Russian)

[6] G. Bennett, “Some elementary inequalities”, Quart. J. Math. Oxford Ser., 38:152 (1987), 401-425 | DOI | MR | Zbl

[7] P. Cheung, V. Kac, Quantum calculus, Edwards Brothers, Inc., Ann Arbor, MI, USA, 2000

[8] T. Ernst, A comprehensive treatment of $q$-calculus, Birkhäuser/Springer Basel AG, Basel, 2012 | MR | Zbl

[9] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge, 1990 | MR

[10] H. Gauchman, “Integral inequalities in $q$-calculus”, Comput. Math. Appl., 47:2–3 (2004), 281-300 | DOI | MR | Zbl

[11] F.H. Jackson, “On $q$-definite integrals”, Quart. J. Pure Appl. Math., 41 (1910), 193-203 | Zbl

[12] A. Kufner, L. Maligranda, L-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plzeň, 2007 | MR | Zbl

[13] L. Maligranda, R. Oinarov, L-E. Persson, “On Hardy $q$-inequalities”, Czechoslovak Math. J., 64 (2014), 659-682 | DOI | MR | Zbl

[14] A.M. Nakhushev, Equations of mathematical biology, Vysshaya shkola, M., 1995 (in Russian) | Zbl