Uniqueness of an inverse source non-local problem for fractional order mixed type equations
Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we investigate the uniqueness of a solution to the inverse source problem with non-local conditions for a mixed parabolic-hyperbolic type equation with the Caputo fractional derivative. Solution of the problem we represent as bi-orthogonal series with respect to space variable and will get fractional order differential equations with respect to time-variable. Using boundary and gluing conditions, we deduce system of algebraic equations regarding unknown constants and imposing condition to the determinant of this system, we prove the uniqueness of the considered problem. Moreover, we find some non-trivial solutions to the problem in the case, in which the imposed conditions are not satisfie.
@article{EMJ_2016_7_1_a5,
     author = {M. S. Salakhitdinov and E. T. Karimov},
     title = {Uniqueness of an inverse source non-local problem for fractional order mixed type equations},
     journal = {Eurasian mathematical journal},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a5/}
}
TY  - JOUR
AU  - M. S. Salakhitdinov
AU  - E. T. Karimov
TI  - Uniqueness of an inverse source non-local problem for fractional order mixed type equations
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 74
EP  - 83
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a5/
LA  - en
ID  - EMJ_2016_7_1_a5
ER  - 
%0 Journal Article
%A M. S. Salakhitdinov
%A E. T. Karimov
%T Uniqueness of an inverse source non-local problem for fractional order mixed type equations
%J Eurasian mathematical journal
%D 2016
%P 74-83
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a5/
%G en
%F EMJ_2016_7_1_a5
M. S. Salakhitdinov; E. T. Karimov. Uniqueness of an inverse source non-local problem for fractional order mixed type equations. Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a5/

[1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006, xvi+523 pp. | MR | Zbl

[2] K.B. Sabitov, N.V. Martem’yanova, “A nonlocal inverse problem for a mixed-type equation”, Russian Mathematics (Izv. VUZ), 55:2 (2011), 71–85 | MR | Zbl

[3] M.V. Keldysh, “On eigenvalues and eigenfunctions of some classes of nonselfadjoint equations”, Sov. Phys. Dokl., 77:1 (1951), 11—14 | Zbl

[4] V.A. Il’in, “Existence of a reduced system of eigen- and associated functions for a nonself adjoint ordinary differential operator”, Trudy MIAN, 142, 1976, 148—155 | MR | Zbl

[5] K. Sakamoto, M. Yamamoto, “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382 (2011), 426–447 | DOI | MR | Zbl

[6] Jin Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, “Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation”, Inverse Problems, 25 (2009), 115002, 16 pp. | DOI | MR | Zbl

[7] Jun-Gang Wang, Yu-Bin Zhou, Ting Wei, “Two regularization methods to identify a spacedependent source for the time-fractional diffusion equation”, Applied Numerical Mathematics, 68 (2013), 39—57 | DOI | MR | Zbl

[8] M. Kirane, S.A. Malik, “Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time”, Applied Mathematics and Computation, 218 (2011), 163–170 | DOI | MR | Zbl

[9] I. Podlubny, Fractional differential equations, Math. Sci. Eng., 198, Academic Press, San Diego, 1999 | MR | Zbl

[10] M. Garg, P. Manohar, S.L. Kalla, “A Mittag–Leffler-type function of two variables”, Integral Transforms and Special Functions, 24 (2013), 934–944 | DOI | MR | Zbl