Inequalities between the norms of a function and its derivatives
Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 28-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem of finding the maximum of the norm $||x||_q$ with the constraints $||x||_p=\eta$, $||\dot{x}||_r=\sigma$, $x(0)=a$, $a, \sigma, \eta>0$, for functions $x\in L_p(\mathbb{R}_-)$ with derivatives $\dot{x}\in L_r(\mathbb{R_-})$, $0 p \leqslant q \infty$, $r > 1$. The arguments employed are based on the standard machinery of the calculus of variations.
@article{EMJ_2016_7_1_a2,
     author = {A. S. Kochurov},
     title = {Inequalities between the norms of a function and its derivatives},
     journal = {Eurasian mathematical journal},
     pages = {28--49},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a2/}
}
TY  - JOUR
AU  - A. S. Kochurov
TI  - Inequalities between the norms of a function and its derivatives
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 28
EP  - 49
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a2/
LA  - en
ID  - EMJ_2016_7_1_a2
ER  - 
%0 Journal Article
%A A. S. Kochurov
%T Inequalities between the norms of a function and its derivatives
%J Eurasian mathematical journal
%D 2016
%P 28-49
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a2/
%G en
%F EMJ_2016_7_1_a2
A. S. Kochurov. Inequalities between the norms of a function and its derivatives. Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 28-49. http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a2/

[1] V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, Optimal control, Springer Science and Business Media, 1987 | MR

[2] Russian Mathematical Surveys, 51:6 (1996), 1093–1126 | DOI | DOI | MR | Zbl

[3] V.F. Babenko, N.P. Korneychuk, V.A. Kofanov, S.A. Pichugov, Inequalities for derivatives and their applications, Naukova Dumka, Kiev, 2003

[4] R.A. DeVore, G.G. Lorentz, Constructive approximation. Kolmogorov-type inequalities for derivatives, Springer, Berlin, 1993 | MR

[5] Selected Works of A.N. Kolmogorov, v. 1, Mathematica and Mechanics, Kluwer, 1991, 277–290 | MR

[6] M.K. Kwong, A. Zettl, Norm inequalities for derivatives and differences, Lecture Notes in Mathematics, Springer, Berlin–Heidelberg, 1992 | MR | Zbl

[7] E. Landau, “Einige Ungleichungen f?ur zweimal differenzierbare Funktionen”, Proc. London Math. Soc., 2:13 (1913), 43–49 | Zbl

[8] Translations of Mathematical Monographs, AMS, Providence, Rhode Island, 2003, 99-118

[9] Sbornik: Mathematics, 188:12 (1997), 1799–1832 | DOI | DOI | MR | Zbl

[10] Math. Notes, 1:2 (1967), 91–99 | DOI | MR | MR | Zbl

[11] B. Sz.-Nagy, “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Univ. Szeged, sect. Sci. Math., 10 (1941), 64–74 | MR

[12] Mathematics and its applications, Kluwer Acad. Publ., Dordrecht, 1991, 442–447

[13] V. Tikhomirov, A. Kochurov, “Kolmogorov-type inequalities on the whole line or half line and the Lagrange principle in the theory of extremum problems”, Eurasian Math. J., 2:3 (2011), 125–142 | MR | Zbl