Boundedness, compactness for a class of fractional integration operators of Weyl type
Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 9-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish criteria for the boundedness and compactness for a class of operators of fractional integration involving the Weyl operator.
@article{EMJ_2016_7_1_a1,
     author = {A. M. Abylaeva},
     title = {Boundedness, compactness for a class of fractional integration operators of {Weyl} type},
     journal = {Eurasian mathematical journal},
     pages = {9--27},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/}
}
TY  - JOUR
AU  - A. M. Abylaeva
TI  - Boundedness, compactness for a class of fractional integration operators of Weyl type
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 9
EP  - 27
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/
LA  - en
ID  - EMJ_2016_7_1_a1
ER  - 
%0 Journal Article
%A A. M. Abylaeva
%T Boundedness, compactness for a class of fractional integration operators of Weyl type
%J Eurasian mathematical journal
%D 2016
%P 9-27
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/
%G en
%F EMJ_2016_7_1_a1
A. M. Abylaeva. Boundedness, compactness for a class of fractional integration operators of Weyl type. Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 9-27. http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/

[1] A.M. Abylaeva, D. Kaskirbaeva, “Boundedness and compactness of fractional integration operator of Holmgren type in weighted Lebesgue spaces”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 75-86 (in Russian)

[2] K.F. Andersen, E.T. Sawyer, “Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators”, Trans. Amer. Math. Soc., 308 (1988), 547-558 | DOI | MR | Zbl

[3] D.E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl

[4] S.M. Farsani, “On the boundedness and compactness of the fractional Riemann-Liouville operators”, Sibirsk. Mat. J., 54:2 (2013), 468-479 (in Russian) | MR | Zbl

[5] L.V. Kantarovich, G.R. Akilov, Functional analysis, Nauka, M., 1977 (in Russian) | MR

[6] M.A. Krasnosel’skii, P.P. Zabreiko, E.N. Pustilnik, P.E. Sobolevski, Integral operators in spaces of summable functions, Nauka, M., 1966 (in Russian) | Zbl

[7] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality — about its history and some related results, University of West Bohemia, Plzen, 2007, 152 pp. | MR

[8] A. Meskhi, “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 106 (1989), 727-733 | MR

[9] R. Oinarov, A.M. Abylaeva, “Criteria for the boundedness of a class of fractional integration”, Mathematical Journal, 4:2(12) (2004), 5-14 (in Russian) | MR | Zbl

[10] D.V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 61:2 (2000), 617-628 | DOI | MR | Zbl

[11] D.V. Prokhorov, V.D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Math., 248, 2003, 289-312 (in Russian) | MR

[12] S.G. Samko, A.A. Kilbac, O.I. Marichev, Integrals and derivatives of fractional order and some of their applications, Science and Technology, Minsk, 1987, 688 pp. (in Russian) | MR