Boundedness, compactness for a class of fractional integration operators of Weyl type
Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 9-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish criteria for the boundedness and compactness for a class of operators of fractional integration involving the Weyl operator.
@article{EMJ_2016_7_1_a1,
     author = {A. M. Abylaeva},
     title = {Boundedness, compactness for a class of fractional integration operators of {Weyl} type},
     journal = {Eurasian mathematical journal},
     pages = {9--27},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/}
}
TY  - JOUR
AU  - A. M. Abylaeva
TI  - Boundedness, compactness for a class of fractional integration operators of Weyl type
JO  - Eurasian mathematical journal
PY  - 2016
SP  - 9
EP  - 27
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/
LA  - en
ID  - EMJ_2016_7_1_a1
ER  - 
%0 Journal Article
%A A. M. Abylaeva
%T Boundedness, compactness for a class of fractional integration operators of Weyl type
%J Eurasian mathematical journal
%D 2016
%P 9-27
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/
%G en
%F EMJ_2016_7_1_a1
A. M. Abylaeva. Boundedness, compactness for a class of fractional integration operators of Weyl type. Eurasian mathematical journal, Tome 7 (2016) no. 1, pp. 9-27. http://geodesic.mathdoc.fr/item/EMJ_2016_7_1_a1/