On monotonicity of solutions of Dirichlet problem for some quasilinear elliptic equations in half-spaces
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 59-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the monotonicity of nonnegative bounded solutions to the Dirichlet problem for a quasilinear elliptic equation of the form $-\Delta_p u=f(u)g(x_n)$ with $p\geqslant3$ in a half-space, where $x_n$ is the normal coordinate of the argument. This assertion implies new nonexistence results for the case $f(u)=u^q$ with the appropriate values of $q$.
@article{EMJ_2015_6_4_a5,
     author = {O. A. Salieva},
     title = {On monotonicity of solutions of {Dirichlet} problem for some quasilinear elliptic equations in half-spaces},
     journal = {Eurasian mathematical journal},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a5/}
}
TY  - JOUR
AU  - O. A. Salieva
TI  - On monotonicity of solutions of Dirichlet problem for some quasilinear elliptic equations in half-spaces
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 59
EP  - 76
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a5/
LA  - en
ID  - EMJ_2015_6_4_a5
ER  - 
%0 Journal Article
%A O. A. Salieva
%T On monotonicity of solutions of Dirichlet problem for some quasilinear elliptic equations in half-spaces
%J Eurasian mathematical journal
%D 2015
%P 59-76
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a5/
%G en
%F EMJ_2015_6_4_a5
O. A. Salieva. On monotonicity of solutions of Dirichlet problem for some quasilinear elliptic equations in half-spaces. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 59-76. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a5/

[1] A. D. Alexandrov, “A characteristic property of the spheres”, Ann. Mat. Pura Appl., 58 (1962), 303–354 | DOI | MR

[2] H. Berestycki, L. Caffarelli, L. Nirenberg, “Further qualitative properties for elliptic equations in unbounded domains”, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Ser. 4, 25 (1997), 69–94 | MR | Zbl

[3] H. Berestycki, L. Nirenberg, “On the method of moving planes and the sliding method”, Bol. Soc. Brasil. Mat. (N. S.), 22 (1991), 1–37 | DOI | MR | Zbl

[4] M. F. Bidaut-Véron, S. I. Pohozaev, “Nonexistence results and estimates for some nonlinear elliptic problems”, Journ. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[5] L. Damascelli, B. Sciunzi, “Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of $m$-Laplace equations”, Calc. Var., 25 (2006), 139–159 | DOI | MR | Zbl

[6] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, “Liouville results for $m$-Laplace equation of Lane–Emden–Fowler type”, Ann. Inst. H. Poincaré, 26 (2009), 1099–1119 | DOI | MR | Zbl

[7] L. Damascelli, B. Sciunzi, “Liouville results for $m$-Laplace equations in a half-plane in $\mathbb{R}^2$”, Diff. Int. Eq., 23 (2010), 419–434 | MR | Zbl

[8] E. N. Dancer, “Some notes on the method of moving planes”, Bull. Austral. Math. Soc., 46 (1992), 425–434 | DOI | MR | Zbl

[9] E. N. Dancer, Y. Du, M. Efendiev, “Quasilinear elliptic equations on half- and quarter-spaces”, Adv. Nonlinear Stud., 13 (2013), 115–136 | MR | Zbl

[10] A. Farina, L. Montoro, G. Riey, B. Sciunzi, “Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces”, Ann. Inst. Henri Poincare (C) Non Linear Analysis, 32 (2015), 1–22 | DOI | MR | Zbl

[11] A. Farina, L. Montoro, B. Sciunzi, “Monotonicity and one-dimensional symmetry for solutions of $-\Delta_pu=f(u)$ in half-spaces”, Calc. Var. and PDE, 43 (2012), 123–145 | DOI | MR | Zbl

[12] A. Farina, L. Montoro, B. Sciunzi, “Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces”, Math. Annalen, 357 (2013), 855–893 | DOI | MR | Zbl

[13] E. I. Galakhov, “A comparison principle for quasilinear operators in unbounded domains”, Nonl. Anal., 70 (2009), 4190–4194 | DOI | MR | Zbl

[14] E. I. Galakhov, O. A. Salieva, “On blow-up of solutions to differential inequalities with singularities on unbounded sets”, JMAA, 408 (2013), 102–113 | MR | Zbl

[15] E. I. Galakhov, O. A. Salieva, “On nonexistence of solutions to Dirichlet problems for some quasilinear elliptic equations in a half-space”, Diff. Eq., 2016 (to appear)

[16] T. Kilpelainen, H. Shahgholian, X. Zhong, “Growth estimates through scaling for quasilinear partial differential equations”, Ann. Acad. Sci. Fennicae, Mathematica, 32 (2007), 595–599 | MR | Zbl

[17] P. Pucci, J. Serrin, The maximum principle, Progress in Nonlinear Differential Equations and Their Applications, 73, Birkhauser Verlag, Basel, 2007, x+235 pp. | MR | Zbl

[18] J. Serrin, “A symmetry problem in potential theory”, Arch. Rational Mech. Anal., 43 (1971), 304–318 | DOI | MR | Zbl

[19] P. Tolksdorf, “Regularity for a more general class of quasilinear elliptic equations”, J. Diff. Eq., 51 (1984), 126–150 | DOI | MR | Zbl

[20] J. L. Vazquez, “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Optim., 12 (1984), 191–202 | DOI | MR | Zbl

[21] H. Zou, “A priori estimates and existence for quasi-linear elliptic equations”, Calc. Var., 33 (2008), 417–437 | DOI | MR | Zbl