Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_4_a3, author = {V. N. Margaryan and H. G. Ghazaryan}, title = {Almost hypoelliptic operators with constant powers}, journal = {Eurasian mathematical journal}, pages = {29--43}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/} }
V. N. Margaryan; H. G. Ghazaryan. Almost hypoelliptic operators with constant powers. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 29-43. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/
[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, v. 1, John Willey and Sons, New York, 1978; v. 2, 1979
[2] J. Chazarain, “Equations aux derivees partielles”, Proc. Intern. Congress Math. Gauthier-Villars (Nice, 1970–1971) | MR
[3] H. G. Ghazaryan, “On almost hypoelliptic polynomials increasing at infinity”, Journal of Contemporary Mathematical Analysis, 46:6 (2011), 13–30 | DOI | MR
[4] H. G. Ghazaryan, “On formaly almost hypoellipyic polynomials with constant powers”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences) (to appear)
[5] H. G. Ghazaryan, V. N. Margaryan, “On a class of almost hypoelliptic operators”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences), 41:6 (2006), 30–46 | MR
[6] H. G. Ghazaryan, V. N. Margaryan, “On increase at infinity of the almost hypoelliptic polynomials”, Eurasian Math. J., 4:4 (2013), 30–42 | MR | Zbl
[7] S. Gindikin, L. R. Volevich, The method of Newton's polyhedron in theory of partial differential equations, Kluwer Academic Publishers, London, 1992 | MR | Zbl
[8] L. Hörmander, The analysis of linear partial differential operators, Springer, 1983
[9] V. G. Karapetyan, V. N. Margaryan, “On almost hypoelliptic operarors in generalised Sobolev spaces”, Math. in Higher Scool, 4:4 (2008), 9–16
[10] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk. Mat., 398:6 (2004), 701–703 | MR
[11] G. G. Kazarjan, “Permanent strength operators with lower estimates through derivatives and formally hypoelliptic operators”, Analysis Mathematika, 3:4 (1977) | MR
[12] 1967 | MR
[13] V. P. Mikhailov, “On the behaviour at infinity of a class of polynomials”, Proc. Steklov Inst. Math., 91, 1967, 59–81 | MR
[14] A. Seidenberg, “A new decision method for elementary algebra”, Ann. of Math., 60 (1954), 365–374 | DOI | MR | Zbl
[15] A. Tarski, A decision method for elementary algebra and geometry, Manuscript, Berkeley, 1951, 63 pp. | MR
[16] F. Treves, “Relations de domiation entre operateurs differentiels”, Acta Math., 101 (1959), 1–139 | DOI | MR | Zbl