Almost hypoelliptic operators with constant powers
Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 29-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a formally almost hypoelliptic operator with constant power and the concept of weighted Sobolev spaces generated by such operators are introduced. We prove some properties of such operators, establish some estimates for functions in those spaces, in particular, the density of smooth functions in those spaces. We intend, in another work, using the results of this paper, to select a set of infinitely differentiable solutions for a class of almost hypoelliptic equations having constant power.
@article{EMJ_2015_6_4_a3,
     author = {V. N. Margaryan and H. G. Ghazaryan},
     title = {Almost hypoelliptic operators with constant powers},
     journal = {Eurasian mathematical journal},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/}
}
TY  - JOUR
AU  - V. N. Margaryan
AU  - H. G. Ghazaryan
TI  - Almost hypoelliptic operators with constant powers
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 29
EP  - 43
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/
LA  - en
ID  - EMJ_2015_6_4_a3
ER  - 
%0 Journal Article
%A V. N. Margaryan
%A H. G. Ghazaryan
%T Almost hypoelliptic operators with constant powers
%J Eurasian mathematical journal
%D 2015
%P 29-43
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/
%G en
%F EMJ_2015_6_4_a3
V. N. Margaryan; H. G. Ghazaryan. Almost hypoelliptic operators with constant powers. Eurasian mathematical journal, Tome 6 (2015) no. 4, pp. 29-43. http://geodesic.mathdoc.fr/item/EMJ_2015_6_4_a3/

[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral representations of functions and embedding theorems, v. 1, John Willey and Sons, New York, 1978; v. 2, 1979

[2] J. Chazarain, “Equations aux derivees partielles”, Proc. Intern. Congress Math. Gauthier-Villars (Nice, 1970–1971) | MR

[3] H. G. Ghazaryan, “On almost hypoelliptic polynomials increasing at infinity”, Journal of Contemporary Mathematical Analysis, 46:6 (2011), 13–30 | DOI | MR

[4] H. G. Ghazaryan, “On formaly almost hypoellipyic polynomials with constant powers”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences) (to appear)

[5] H. G. Ghazaryan, V. N. Margaryan, “On a class of almost hypoelliptic operators”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences), 41:6 (2006), 30–46 | MR

[6] H. G. Ghazaryan, V. N. Margaryan, “On increase at infinity of the almost hypoelliptic polynomials”, Eurasian Math. J., 4:4 (2013), 30–42 | MR | Zbl

[7] S. Gindikin, L. R. Volevich, The method of Newton's polyhedron in theory of partial differential equations, Kluwer Academic Publishers, London, 1992 | MR | Zbl

[8] L. Hörmander, The analysis of linear partial differential operators, Springer, 1983

[9] V. G. Karapetyan, V. N. Margaryan, “On almost hypoelliptic operarors in generalised Sobolev spaces”, Math. in Higher Scool, 4:4 (2008), 9–16

[10] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk. Mat., 398:6 (2004), 701–703 | MR

[11] G. G. Kazarjan, “Permanent strength operators with lower estimates through derivatives and formally hypoelliptic operators”, Analysis Mathematika, 3:4 (1977) | MR

[12] 1967 | MR

[13] V. P. Mikhailov, “On the behaviour at infinity of a class of polynomials”, Proc. Steklov Inst. Math., 91, 1967, 59–81 | MR

[14] A. Seidenberg, “A new decision method for elementary algebra”, Ann. of Math., 60 (1954), 365–374 | DOI | MR | Zbl

[15] A. Tarski, A decision method for elementary algebra and geometry, Manuscript, Berkeley, 1951, 63 pp. | MR

[16] F. Treves, “Relations de domiation entre operateurs differentiels”, Acta Math., 101 (1959), 1–139 | DOI | MR | Zbl