Embeddings and widths of weighted Sobolev classes
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 93-100

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, embedding theorems for reduced weighted Sobolev classes $\hat{W}_{p,g}^r(\Omega)$ in Lebesgue spaces $L_{q,v}(\Omega)$ are obtained. Here weight functions have singularity at the origin and $v\notin L_q(\Omega)$. For some special weight functions order estimates for Kolmogorov, Gelfand and linear widths are obtained.
@article{EMJ_2015_6_3_a6,
     author = {A. A. Vasil'eva},
     title = {Embeddings and widths of weighted {Sobolev} classes},
     journal = {Eurasian mathematical journal},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a6/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Embeddings and widths of weighted Sobolev classes
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 93
EP  - 100
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a6/
LA  - en
ID  - EMJ_2015_6_3_a6
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Embeddings and widths of weighted Sobolev classes
%J Eurasian mathematical journal
%D 2015
%P 93-100
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a6/
%G en
%F EMJ_2015_6_3_a6
A. A. Vasil'eva. Embeddings and widths of weighted Sobolev classes. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 93-100. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a6/