@article{EMJ_2015_6_3_a3,
author = {R. Manna},
title = {A simple proof of the boundedness of {Bourgain{\cyrv}{\CYRDJE}TMs} circular maximal operator},
journal = {Eurasian mathematical journal},
pages = {45--53},
year = {2015},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/}
}
R. Manna. A simple proof of the boundedness of BourgainвЂTMs circular maximal operator. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 45-53. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/
[1] J. Bourgain, “Averages in the plane over convex curves and maximal operators”, J. Analyse Math., 47 (1986), 69–85 | DOI | MR | Zbl
[2] A. Carbery, “An almost-orthogonality principle with applications to maximal functions associated to convex bodies”, Bull. Amer. Math. Soc., 14 (1986), 269–273 | DOI | MR | Zbl
[3] G. Mockenhaupt, A. Seeger, C. D. Sogge, “Wave front sets, local smoothing and Bourgain's circular maximal theorem”, Ann. Math., 136 (1992), 207–218 | DOI | MR | Zbl
[4] R. Manna, “Weighted inequalities for spherial maximal operator”, Proc. Japan Acad. Ser. A, 91 (2015), 135–140 | DOI | MR
[5] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton University Press, 1993 | MR | Zbl
[6] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 1971 | MR
[7] E. M. Stein, “Maximal functions: Spherical Means”, Proc. Natl. Acad. Sci. USA, 73:7 (1976), 2174–2175 | DOI | MR | Zbl
[8] E. M. Stein, S. Wainger, “Problem in harmonic analysis related to curvature”, Bull. Amer. Math. Soc., 84 (1978), 1239–1295 | DOI | MR | Zbl