A simple proof of the boundedness of Bourgain’s circular maximal operator
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 45-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a set $E=(0, \infty)$, the circular maximal operator $\mathcal{M}$ associated with the parameter set $E$ is defined as the supremum of the circular means of a function when the radii of the circles are in $E$. Using stationary phase method, we give a simple proof of the $L^p$, $p>2$ boundedness of Bourgain's circular maximal operator.
@article{EMJ_2015_6_3_a3,
author = {R. Manna},
title = {A simple proof of the boundedness of {Bourgain{\textquoteright}s} circular maximal operator},
journal = {Eurasian mathematical journal},
pages = {45--53},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/}
}
R. Manna. A simple proof of the boundedness of Bourgain’s circular maximal operator. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 45-53. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/