A simple proof of the boundedness of Bourgain’s circular maximal operator
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 45-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a set $E=(0, \infty)$, the circular maximal operator $\mathcal{M}$ associated with the parameter set $E$ is defined as the supremum of the circular means of a function when the radii of the circles are in $E$. Using stationary phase method, we give a simple proof of the $L^p$, $p>2$ boundedness of Bourgain's circular maximal operator.
@article{EMJ_2015_6_3_a3,
     author = {R. Manna},
     title = {A simple proof of the boundedness of {Bourgain{\textquoteright}s} circular maximal operator},
     journal = {Eurasian mathematical journal},
     pages = {45--53},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/}
}
TY  - JOUR
AU  - R. Manna
TI  - A simple proof of the boundedness of Bourgain’s circular maximal operator
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 45
EP  - 53
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/
LA  - en
ID  - EMJ_2015_6_3_a3
ER  - 
%0 Journal Article
%A R. Manna
%T A simple proof of the boundedness of Bourgain’s circular maximal operator
%J Eurasian mathematical journal
%D 2015
%P 45-53
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/
%G en
%F EMJ_2015_6_3_a3
R. Manna. A simple proof of the boundedness of Bourgain’s circular maximal operator. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 45-53. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a3/

[1] J. Bourgain, “Averages in the plane over convex curves and maximal operators”, J. Analyse Math., 47 (1986), 69–85 | DOI | MR | Zbl

[2] A. Carbery, “An almost-orthogonality principle with applications to maximal functions associated to convex bodies”, Bull. Amer. Math. Soc., 14 (1986), 269–273 | DOI | MR | Zbl

[3] G. Mockenhaupt, A. Seeger, C. D. Sogge, “Wave front sets, local smoothing and Bourgain's circular maximal theorem”, Ann. Math., 136 (1992), 207–218 | DOI | MR | Zbl

[4] R. Manna, “Weighted inequalities for spherial maximal operator”, Proc. Japan Acad. Ser. A, 91 (2015), 135–140 | DOI | MR

[5] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton University Press, 1993 | MR | Zbl

[6] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 1971 | MR

[7] E. M. Stein, “Maximal functions: Spherical Means”, Proc. Natl. Acad. Sci. USA, 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[8] E. M. Stein, S. Wainger, “Problem in harmonic analysis related to curvature”, Bull. Amer. Math. Soc., 84 (1978), 1239–1295 | DOI | MR | Zbl