Refinements of determinantal inequalities of Jensen’s type
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some new refinements are given for Jensen’s type inequalities involving the determinants of positive definite matrices. The so-called Bellman–Bergstrom–Fan functionals are considered. These functionals are not only concave, but superlinear which is a stronger condition. The results take advantage of this property. In seek of applications, results are furnished with examples.
@article{EMJ_2015_6_3_a2,
     author = {L. Horv\'ath and Kh. A. Khan and J. Pe\v{c}ari\'c},
     title = {Refinements of determinantal inequalities of {Jensen{\textquoteright}s} type},
     journal = {Eurasian mathematical journal},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a2/}
}
TY  - JOUR
AU  - L. Horváth
AU  - Kh. A. Khan
AU  - J. Pečarić
TI  - Refinements of determinantal inequalities of Jensen’s type
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 30
EP  - 44
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a2/
LA  - en
ID  - EMJ_2015_6_3_a2
ER  - 
%0 Journal Article
%A L. Horváth
%A Kh. A. Khan
%A J. Pečarić
%T Refinements of determinantal inequalities of Jensen’s type
%J Eurasian mathematical journal
%D 2015
%P 30-44
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a2/
%G en
%F EMJ_2015_6_3_a2
L. Horváth; Kh. A. Khan; J. Pečarić. Refinements of determinantal inequalities of Jensen’s type. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 30-44. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a2/

[1] L. Horváth, “A method to refine the discrete Jensen's inequality for convex and mid-convex functions”, Math. Comput. Modelling, 54 (2011), 2451–2459 | DOI | MR | Zbl

[2] L. Horváth, “A parameter dependent refinement of the discrete Jensen's inequality for convex and mid-convex functions”, J. Inequal. Appl., 2011:26 (2011), 14 pp. | MR

[3] L. Horváth, K. A. Khan, J. Pečarić, “Refinements of results about weighted mixed symmetric means and related Cauchy means”, J. Inequal. Appl., 2011, 350973, 19 pp. | DOI | MR | Zbl

[4] L. Horváth, K. A. Khan, J. Pečarić, “Further refinements of results about weighted mixed symmetric means and related Cauchy means”, Advances in Inequalities and Applications, 1:1 (2012), 12–32 | MR

[5] L. Horváth, J. Pečarić, “A refinement of the discrete Jensen's inequality”, Math. Ineq. Appl., 14:4 (2011), 777–791 | MR | Zbl

[6] D. S. Mitrinović, J. Pečarić, “Interpolation of determinantal inequalities of Jensen's type”, Tamkang Journal of Mathematics, 22:1 (1991) | MR

[7] D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publisher, 1993 | MR | Zbl