Characterization of subdiagonal algebras on noncommutative Lorentz spaces
Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 6-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal{M}, \tau)$ be a finite von Neumann algebra, $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. We prove that $\mathcal{A}$ has $L^{p,q}$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra. We also obtain some characterizations of subdiagonal algebras.
@article{EMJ_2015_6_3_a0,
     author = {T. N. Bekjan and A. Kairat},
     title = {Characterization of subdiagonal algebras on noncommutative {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {6--12},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a0/}
}
TY  - JOUR
AU  - T. N. Bekjan
AU  - A. Kairat
TI  - Characterization of subdiagonal algebras on noncommutative Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 6
EP  - 12
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a0/
LA  - en
ID  - EMJ_2015_6_3_a0
ER  - 
%0 Journal Article
%A T. N. Bekjan
%A A. Kairat
%T Characterization of subdiagonal algebras on noncommutative Lorentz spaces
%J Eurasian mathematical journal
%D 2015
%P 6-12
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a0/
%G en
%F EMJ_2015_6_3_a0
T. N. Bekjan; A. Kairat. Characterization of subdiagonal algebras on noncommutative Lorentz spaces. Eurasian mathematical journal, Tome 6 (2015) no. 3, pp. 6-12. http://geodesic.mathdoc.fr/item/EMJ_2015_6_3_a0/