Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_2_a4, author = {D. G. Rakhimov}, title = {On bifurcation of {Noether} points in discrete spectrum of linear operators}, journal = {Eurasian mathematical journal}, pages = {75--81}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/} }
D. G. Rakhimov. On bifurcation of Noether points in discrete spectrum of linear operators. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 75-81. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/
[1] I. M. Glazman, Yu. I. Ljubich, Finite-dimensional linear analysis, Nauka, M., 1969 (in Russian)
[2] T. Kato, Perturbation theory of linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR
[3] D. G. Rakhimov, “On the computation of multiple Fredholm points of discrete spectra of linear operator-functions by pseudoperturbation method”, Zhurnal Srednevolzhskogo Matematicheskogo Obshestva, 12:2 (2010), 106–112 (in Russian) | MR
[4] D. G. Rakhimov, “On the regularization of multiple eigenvalues by pseudoperturbation method”, Vestnik of Samara State University, Natural sciences, 2012, no. 6(97), 35–41 (in Russian) | MR | Zbl
[5] F. Rellich, “Stõrungstheory der Spektalzerlegung, I”, Math. Ann., 113 (1936), 600–619 | DOI | MR
[6] F. Rellich, “Stõrungstheory der Spektalzerlegung, II”, Math. Ann., 113 (1936), 677–685 | DOI | MR | Zbl
[7] F. Rellich, “Stõrungstheory der Spektalzerlegung, III”, Math. Ann., 116 (1949), 555–570 | DOI | MR
[8] V. A. Trenogin, “Perturbation of eigenvalues and eigenelements of linear operators”, Doklady Ac. Sci. USSR. Mathematics, 167:3 (1966), 519–522 | MR | Zbl
[9] V. P. Trofimov, Abstract of PhD thesis, Voronezh, 1969 (in Russian)
[10] Volters-Noordorf Int. Publ., Leyden, 1974 | MR
[11] M. I. Vishik, L. A. Ljusternik, “Perturbation of eigenvalues and eigenelements of somes not self-adjoint operators”, Doklady Ac. Sci. USSR. Mathematics, 139 (1960), 251–253 | MR