On bifurcation of Noether points in discrete spectrum of linear operators
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work in the development of our previous articles [3, 4] the perturbation of the Noether points in discrete spectrum of linear operator-functions is considered. With the help of the perturbed operator regularization an approach is suggested allowing to reduce the problem of its eigenvalues determination (which can turn out to be multiple) to simple ones together with correspondent eigenelements.
@article{EMJ_2015_6_2_a4,
     author = {D. G. Rakhimov},
     title = {On bifurcation of {Noether} points in discrete spectrum of linear operators},
     journal = {Eurasian mathematical journal},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/}
}
TY  - JOUR
AU  - D. G. Rakhimov
TI  - On bifurcation of Noether points in discrete spectrum of linear operators
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 75
EP  - 81
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/
LA  - en
ID  - EMJ_2015_6_2_a4
ER  - 
%0 Journal Article
%A D. G. Rakhimov
%T On bifurcation of Noether points in discrete spectrum of linear operators
%J Eurasian mathematical journal
%D 2015
%P 75-81
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/
%G en
%F EMJ_2015_6_2_a4
D. G. Rakhimov. On bifurcation of Noether points in discrete spectrum of linear operators. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 75-81. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a4/

[1] I. M. Glazman, Yu. I. Ljubich, Finite-dimensional linear analysis, Nauka, M., 1969 (in Russian)

[2] T. Kato, Perturbation theory of linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR

[3] D. G. Rakhimov, “On the computation of multiple Fredholm points of discrete spectra of linear operator-functions by pseudoperturbation method”, Zhurnal Srednevolzhskogo Matematicheskogo Obshestva, 12:2 (2010), 106–112 (in Russian) | MR

[4] D. G. Rakhimov, “On the regularization of multiple eigenvalues by pseudoperturbation method”, Vestnik of Samara State University, Natural sciences, 2012, no. 6(97), 35–41 (in Russian) | MR | Zbl

[5] F. Rellich, “Stõrungstheory der Spektalzerlegung, I”, Math. Ann., 113 (1936), 600–619 | DOI | MR

[6] F. Rellich, “Stõrungstheory der Spektalzerlegung, II”, Math. Ann., 113 (1936), 677–685 | DOI | MR | Zbl

[7] F. Rellich, “Stõrungstheory der Spektalzerlegung, III”, Math. Ann., 116 (1949), 555–570 | DOI | MR

[8] V. A. Trenogin, “Perturbation of eigenvalues and eigenelements of linear operators”, Doklady Ac. Sci. USSR. Mathematics, 167:3 (1966), 519–522 | MR | Zbl

[9] V. P. Trofimov, Abstract of PhD thesis, Voronezh, 1969 (in Russian)

[10] Volters-Noordorf Int. Publ., Leyden, 1974 | MR

[11] M. I. Vishik, L. A. Ljusternik, “Perturbation of eigenvalues and eigenelements of somes not self-adjoint operators”, Doklady Ac. Sci. USSR. Mathematics, 139 (1960), 251–253 | MR