On estimates of the approximation numbers of the Hardy operator
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two–sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten–Neumann norms in the new case, when the compact operator $$ Tf(x)=\int_0^x f(\tau) d\tau, \quad x>0, $$ is acting from a Lebesgue space to a Lorentz space $(T: L_v^r(R^+)\to L_\omega^{pq}(R^+))$ under the condition $1$.
@article{EMJ_2015_6_2_a2,
     author = {E. N. Lomakina},
     title = {On estimates of the approximation numbers of the {Hardy} operator},
     journal = {Eurasian mathematical journal},
     pages = {41--62},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/}
}
TY  - JOUR
AU  - E. N. Lomakina
TI  - On estimates of the approximation numbers of the Hardy operator
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 41
EP  - 62
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
LA  - en
ID  - EMJ_2015_6_2_a2
ER  - 
%0 Journal Article
%A E. N. Lomakina
%T On estimates of the approximation numbers of the Hardy operator
%J Eurasian mathematical journal
%D 2015
%P 41-62
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
%G en
%F EMJ_2015_6_2_a2
E. N. Lomakina. On estimates of the approximation numbers of the Hardy operator. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/