On estimates of the approximation numbers of the Hardy operator
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain two–sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten–Neumann norms in the new case, when the compact operator $$ Tf(x)=\int_0^x f(\tau) d\tau, \quad x>0, $$ is acting from a Lebesgue space to a Lorentz space $(T: L_v^r(R^+)\to L_\omega^{pq}(R^+))$ under the condition $1$.
@article{EMJ_2015_6_2_a2,
     author = {E. N. Lomakina},
     title = {On estimates of the approximation numbers of the {Hardy} operator},
     journal = {Eurasian mathematical journal},
     pages = {41--62},
     year = {2015},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/}
}
TY  - JOUR
AU  - E. N. Lomakina
TI  - On estimates of the approximation numbers of the Hardy operator
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 41
EP  - 62
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
LA  - en
ID  - EMJ_2015_6_2_a2
ER  - 
%0 Journal Article
%A E. N. Lomakina
%T On estimates of the approximation numbers of the Hardy operator
%J Eurasian mathematical journal
%D 2015
%P 41-62
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
%G en
%F EMJ_2015_6_2_a2
E. N. Lomakina. On estimates of the approximation numbers of the Hardy operator. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/

[1] D. E. Edmunds, W. D. Evans, D. J. Harris, “Approximation numbers of certain Volterra integral operators”, J. London Math. Soc., 37:2 (1988), 471–489 | DOI | MR | Zbl

[2] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math., 124:1 (1997), 59–80 | MR | Zbl

[3] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl

[4] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Am. Math. Soc., 745, 2002, 1–87 | MR

[5] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy-type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | MR | Zbl

[6] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc., 53:2 (1996), 369–382 | DOI | MR | Zbl

[7] E. N. Lomakina, V. D. Stepanov, “On Hardy-type operators in Banach function spaces on the half-axis”, Dokl. Akad. Nauk, 359:1 (1998), 21–23 | MR | Zbl

[8] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl

[9] A. A. Vasil'eva, “Estimates for the widths of weighted Sobolev classes”, Sb. Math., 201:7 (2010), 947–984 | DOI | MR | Zbl