On estimates of the approximation numbers of the Hardy operator
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain two–sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten–Neumann norms in the new case, when the compact operator
$$
Tf(x)=\int_0^x f(\tau) d\tau, \quad x>0,
$$
is acting from a Lebesgue space to a Lorentz space $(T: L_v^r(R^+)\to L_\omega^{pq}(R^+))$ under the
condition $1$.
@article{EMJ_2015_6_2_a2,
author = {E. N. Lomakina},
title = {On estimates of the approximation numbers of the {Hardy} operator},
journal = {Eurasian mathematical journal},
pages = {41--62},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/}
}
E. N. Lomakina. On estimates of the approximation numbers of the Hardy operator. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/