Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_2_a2, author = {E. N. Lomakina}, title = {On estimates of the approximation numbers of the {Hardy} operator}, journal = {Eurasian mathematical journal}, pages = {41--62}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/} }
E. N. Lomakina. On estimates of the approximation numbers of the Hardy operator. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
[1] D. E. Edmunds, W. D. Evans, D. J. Harris, “Approximation numbers of certain Volterra integral operators”, J. London Math. Soc., 37:2 (1988), 471–489 | DOI | MR | Zbl
[2] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math., 124:1 (1997), 59–80 | MR | Zbl
[3] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl
[4] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Am. Math. Soc., 745, 2002, 1–87 | MR
[5] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy-type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | MR | Zbl
[6] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc., 53:2 (1996), 369–382 | DOI | MR | Zbl
[7] E. N. Lomakina, V. D. Stepanov, “On Hardy-type operators in Banach function spaces on the half-axis”, Dokl. Akad. Nauk, 359:1 (1998), 21–23 | MR | Zbl
[8] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl
[9] A. A. Vasil'eva, “Estimates for the widths of weighted Sobolev classes”, Sb. Math., 201:7 (2010), 947–984 | DOI | MR | Zbl