On estimates of the approximation numbers of the Hardy operator
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two–sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten–Neumann norms in the new case, when the compact operator $$ Tf(x)=\int_0^x f(\tau) d\tau, \quad x>0, $$ is acting from a Lebesgue space to a Lorentz space $(T: L_v^r(R^+)\to L_\omega^{pq}(R^+))$ under the condition $1$.
@article{EMJ_2015_6_2_a2,
     author = {E. N. Lomakina},
     title = {On estimates of the approximation numbers of the {Hardy} operator},
     journal = {Eurasian mathematical journal},
     pages = {41--62},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/}
}
TY  - JOUR
AU  - E. N. Lomakina
TI  - On estimates of the approximation numbers of the Hardy operator
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 41
EP  - 62
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
LA  - en
ID  - EMJ_2015_6_2_a2
ER  - 
%0 Journal Article
%A E. N. Lomakina
%T On estimates of the approximation numbers of the Hardy operator
%J Eurasian mathematical journal
%D 2015
%P 41-62
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/
%G en
%F EMJ_2015_6_2_a2
E. N. Lomakina. On estimates of the approximation numbers of the Hardy operator. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a2/

[1] D. E. Edmunds, W. D. Evans, D. J. Harris, “Approximation numbers of certain Volterra integral operators”, J. London Math. Soc., 37:2 (1988), 471–489 | DOI | MR | Zbl

[2] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math., 124:1 (1997), 59–80 | MR | Zbl

[3] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl

[4] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Am. Math. Soc., 745, 2002, 1–87 | MR

[5] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy-type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | MR | Zbl

[6] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc., 53:2 (1996), 369–382 | DOI | MR | Zbl

[7] E. N. Lomakina, V. D. Stepanov, “On Hardy-type operators in Banach function spaces on the half-axis”, Dokl. Akad. Nauk, 359:1 (1998), 21–23 | MR | Zbl

[8] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl

[9] A. A. Vasil'eva, “Estimates for the widths of weighted Sobolev classes”, Sb. Math., 201:7 (2010), 947–984 | DOI | MR | Zbl