Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 18-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate the problem of distributed optimal control for the oscillation processes described by Fredholm integro-differential equations with partial derivatives when the function of the external source depends nonlinearly on the control parameters. We have developed an algorithm for finding approximate solutions of nonlinear optimization problems with arbitrary precision. The developed method of solving nonlinear optimization problems is constructive and can be used in applications.
@article{EMJ_2015_6_2_a1,
author = {A. K. Kerimbekov and E. F. Abdyldaeva},
title = {Optimal distributed control for the processes of oscillation described by {Fredholm} integro-differential equations},
journal = {Eurasian mathematical journal},
pages = {18--40},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/}
}
TY - JOUR AU - A. K. Kerimbekov AU - E. F. Abdyldaeva TI - Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations JO - Eurasian mathematical journal PY - 2015 SP - 18 EP - 40 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/ LA - en ID - EMJ_2015_6_2_a1 ER -
%0 Journal Article %A A. K. Kerimbekov %A E. F. Abdyldaeva %T Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations %J Eurasian mathematical journal %D 2015 %P 18-40 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/ %G en %F EMJ_2015_6_2_a1
A. K. Kerimbekov; E. F. Abdyldaeva. Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 18-40. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/