Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations
Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 18-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the problem of distributed optimal control for the oscillation processes described by Fredholm integro-differential equations with partial derivatives when the function of the external source depends nonlinearly on the control parameters. We have developed an algorithm for finding approximate solutions of nonlinear optimization problems with arbitrary precision. The developed method of solving nonlinear optimization problems is constructive and can be used in applications.
@article{EMJ_2015_6_2_a1,
     author = {A. K. Kerimbekov and E. F. Abdyldaeva},
     title = {Optimal distributed control for the processes of oscillation described by {Fredholm} integro-differential equations},
     journal = {Eurasian mathematical journal},
     pages = {18--40},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
AU  - E. F. Abdyldaeva
TI  - Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 18
EP  - 40
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/
LA  - en
ID  - EMJ_2015_6_2_a1
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%A E. F. Abdyldaeva
%T Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations
%J Eurasian mathematical journal
%D 2015
%P 18-40
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/
%G en
%F EMJ_2015_6_2_a1
A. K. Kerimbekov; E. F. Abdyldaeva. Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations. Eurasian mathematical journal, Tome 6 (2015) no. 2, pp. 18-40. http://geodesic.mathdoc.fr/item/EMJ_2015_6_2_a1/

[1] A. I. Egorov, Optimal control of thermal and diffusion processes, Nauka, M., 1978, 500 pp. | MR

[2] A. K. Kerimbekov, Nonlinear optimal control of linear systems with distributed parameters, Bishkek, 2003, 224 pp.

[3] V. Komkov, Optimal control theory for the damping of vibrations of simple elastic systems, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[4] M. V. Krasnov, Integral equations, Nauka, M., 1975 (in Russian) | MR

[5] J. L. Lions, Controle optimal de systemes gouvernes par des equations aux derives partielles, Dunod Gauthier-Villars, Paris, 1968 | MR

[6] L. A. Lusternik, V. I. Sobolev, Elements of functional analysis, Nauka, M., 1965 (in Russian) | MR

[7] V. I. Plotnikov, “The energy inequality and the over-determination property of systems of eigenfunction”, Math. USSR math. ser., 32:4 (1968), 743–755 | MR | Zbl

[8] R. D. Richtmyer, Principles of advanced mathematical physics, v. 1, Springer-Verlag, New York–Heidelberg–Berlin, 1978 | MR | Zbl

[9] F. Riesz, B. Sz.-Nagy, Lecons d'analyse fonctionnelle, Budapest, 1953

[10] A. N. Tikhonov, A. A. Samarskiy, Equations of mathematical physics, Nauka, M., 1972, 735 pp. | MR

[11] A. B. Vasileva, A. N. Tikhonov, Integral equations, Publishing house MGU, M., 1989

[12] V. S. Vladimirov, “Mathematical problems of speed transport theory of particles”, Trudy MIAN, 61, 1961, 3–158 (in Russian) | MR