On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 123-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish a criterion for the completeness and minimality of the system $(x^{-p-1}\sqrt{x\rho_k}J_\nu(x\rho_k):k\in\mathbb{N})$ in the space $L^2((0;1); x^{2p}dx)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant1/2$, $p\in\mathbb{R}$ and $(\rho_k : k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.
@article{EMJ_2015_6_1_a9,
author = {B. V. Vynnyts'kyi and R. V. Khats'},
title = {On the completeness and minimality of sets of {Bessel} functions in~weighted $L^2$-spaces},
journal = {Eurasian mathematical journal},
pages = {123--131},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/}
}
TY - JOUR AU - B. V. Vynnyts'kyi AU - R. V. Khats' TI - On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces JO - Eurasian mathematical journal PY - 2015 SP - 123 EP - 131 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/ LA - en ID - EMJ_2015_6_1_a9 ER -
B. V. Vynnyts'kyi; R. V. Khats'. On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/