Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_1_a9, author = {B. V. Vynnyts'kyi and R. V. Khats'}, title = {On the completeness and minimality of sets of {Bessel} functions in~weighted $L^2$-spaces}, journal = {Eurasian mathematical journal}, pages = {123--131}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/} }
TY - JOUR AU - B. V. Vynnyts'kyi AU - R. V. Khats' TI - On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces JO - Eurasian mathematical journal PY - 2015 SP - 123 EP - 131 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/ LA - en ID - EMJ_2015_6_1_a9 ER -
B. V. Vynnyts'kyi; R. V. Khats'. On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/
[1] N. I. Akhiezer, “To the theory of coupled integral equations”, Zapiski matem. otdelenia fiziko-matem. fakulteta i Kharkovskogo matem. obschestva, 25, Kharkov State University Press, 1957, 5–31 (in Russian)
[2] R. P. Boas, H. Pollard, “Complete sets of Bessel and Legendre functions”, Ann. of Math., 48:2 (1947), 366–384 | DOI | MR | Zbl
[3] M. M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain, Nauka, M., 1966 (in Russian) | MR
[4] J. L. Griffith, “Hankel transforms of functions zero outside a finite interval”, J. Proc. Roy. Soc. New South Wales, 89 (1955), 109–115 | MR
[5] G. R. Grozev, Q. I. Rahman, “Lagrange interpolation in the zeros of Bessel functions by entire functions of exponential type and mean convergence”, Methods Appl. Anal., 3:1 (1996), 46–79 | MR | Zbl
[6] J. R. Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, London–New York–Melbourne–Cambridge, 1977 | MR | Zbl
[7] H. Hochstadt, “The mean convergence of Fourier–Bessel series”, SIAM Rev., 9 (1967), 211–218 | DOI | MR | Zbl
[8] B. G. Korenev, Bessel functions and their applications, Taylor Francis, Inc., London–New York, 2002 | MR | Zbl
[9] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr. Amer. Math. Soc., 150, Providence, R.I., 1996 | MR | Zbl
[10] A. M. Sedletskii, “Analytic Fourier transforms and exponential approximations, I”, J. Math. Sci., 129:6 (2005), 4251–4408 | DOI | MR
[11] F. Serier, “The inverse spectral problem for radial Schrödinger operators on $[0,1]$”, J. Differential Equations, 235:1 (2007), 101–126 | DOI | MR | Zbl
[12] I. Singer, Bases in Banach spaces, v. 1, Springer-Verlag, Berlin, 1970 | MR | Zbl
[13] K. Stempak, “On convergence and divergence of Fourier–Bessel series”, Electron. Trans. Numer. Anal., 14 (2002), 223–235 | MR | Zbl
[14] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2nd ed., Clarendon Press, Oxford, 1948
[15] K. R. Unni, “Hankel transforms and entire functions”, Bull. Amer. Math. Soc., 71:3 (1965), 511–513 | DOI | MR | Zbl
[16] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1981 (in Russian) | MR
[17] B. V. Vynnyts'kyi, R. V. Khats', “Completeness and minimality of systems of Bessel functions”, Ufa Math. J., 5:2 (2013), 132–141 | MR
[18] B. V. Vynnyts'kyi, R. V. Khats', “Some approximation properties of the systems of Bessel functions of index $-3/2$”, Mat. Stud., 34:2 (2010), 152–159 | MR | Zbl
[19] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl