On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 123-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a criterion for the completeness and minimality of the system $(x^{-p-1}\sqrt{x\rho_k}J_\nu(x\rho_k):k\in\mathbb{N})$ in the space $L^2((0;1); x^{2p}dx)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant1/2$, $p\in\mathbb{R}$ and $(\rho_k : k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.
@article{EMJ_2015_6_1_a9,
     author = {B. V. Vynnyts'kyi and R. V. Khats'},
     title = {On the completeness and minimality of sets of {Bessel} functions in~weighted $L^2$-spaces},
     journal = {Eurasian mathematical journal},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/}
}
TY  - JOUR
AU  - B. V. Vynnyts'kyi
AU  - R. V. Khats'
TI  - On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 123
EP  - 131
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/
LA  - en
ID  - EMJ_2015_6_1_a9
ER  - 
%0 Journal Article
%A B. V. Vynnyts'kyi
%A R. V. Khats'
%T On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces
%J Eurasian mathematical journal
%D 2015
%P 123-131
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/
%G en
%F EMJ_2015_6_1_a9
B. V. Vynnyts'kyi; R. V. Khats'. On the completeness and minimality of sets of Bessel functions in~weighted $L^2$-spaces. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a9/