Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_1_a3, author = {H. Mao}, title = {The relationships between posets and independent sets of a matroid of arbitrary cardinality}, journal = {Eurasian mathematical journal}, pages = {56--64}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/} }
H. Mao. The relationships between posets and independent sets of a matroid of arbitrary cardinality. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/
[1] D. Betten, W. Wenzel, “On linear spaces and matroids of arbitrary cardinality”, Algebra Universalis, 49 (2003), 259–288 | DOI | MR | Zbl
[2] G. Birkhoff, Lattice Theory, 3rd. ed., American Mathematical Society, Providence, 1967 | MR | Zbl
[3] R. A. Brualdi, J. H. Mason, “Transversal matroids and Hall's theorem”, Pacific J. of Math., 41:3 (1972), 601–613 | DOI | MR | Zbl
[4] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh, P. Wollan, “Axioms for infinite matroids”, Advances in Math., 239 (2013), 18–46 | DOI | MR | Zbl
[5] G. Grätzer, Lattice Theory: Foundation, Springer Basel AG, Belin, 2011 | MR
[6] H. Mao, “On geometric lattices and matroids of arbitrary cardinality”, Ars Combinatoria, 81 (2006), 23–32 | MR | Zbl
[7] H. Mao, “Paving matroids of arbitrary cardinality”, Ars Combinatoria, 90 (2009), 245–256 | MR | Zbl
[8] H. Mao, “Characterizations of disconnected matroids”, Algebra Colloquium, 15:1 (2008), 129–134 | DOI | MR | Zbl
[9] H. Mao, G. Wang, “Some properties of base-matroids of aribitrary cardinality”, Rockey Mountain J. of Math., 40:1 (2010), 291–303 | DOI | MR | Zbl
[10] J. Oxley, Matroid Theory, Oxford University Press, New York, 2006 | MR | Zbl
[11] J. Oxley, “Infinite Matroid”, Matroid Application, ed. N. White, Cambridge Universtiy Press, Cambridge, 1992, 73–90 | DOI | MR
[12] D. J. A. Welsh, Matroid Theory, Academic Press Inc., London, 1976 | MR | Zbl