The relationships between posets and independent sets of a matroid of arbitrary cardinality
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

By constructing the correspondent relationship between matroids of arbitrary cardinality and posets, under isomorphism, this paper characterizes matroids of arbitrary cardinality without loops. Utilizing this characterization, it realizes the translation of some results from posets to matroid of arbitrary cardinality frameworks. At last, we give the conclusion.
@article{EMJ_2015_6_1_a3,
     author = {H. Mao},
     title = {The relationships between posets and independent sets of a matroid of arbitrary cardinality},
     journal = {Eurasian mathematical journal},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/}
}
TY  - JOUR
AU  - H. Mao
TI  - The relationships between posets and independent sets of a matroid of arbitrary cardinality
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 56
EP  - 64
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/
LA  - en
ID  - EMJ_2015_6_1_a3
ER  - 
%0 Journal Article
%A H. Mao
%T The relationships between posets and independent sets of a matroid of arbitrary cardinality
%J Eurasian mathematical journal
%D 2015
%P 56-64
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/
%G en
%F EMJ_2015_6_1_a3
H. Mao. The relationships between posets and independent sets of a matroid of arbitrary cardinality. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a3/

[1] D. Betten, W. Wenzel, “On linear spaces and matroids of arbitrary cardinality”, Algebra Universalis, 49 (2003), 259–288 | DOI | MR | Zbl

[2] G. Birkhoff, Lattice Theory, 3rd. ed., American Mathematical Society, Providence, 1967 | MR | Zbl

[3] R. A. Brualdi, J. H. Mason, “Transversal matroids and Hall's theorem”, Pacific J. of Math., 41:3 (1972), 601–613 | DOI | MR | Zbl

[4] H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh, P. Wollan, “Axioms for infinite matroids”, Advances in Math., 239 (2013), 18–46 | DOI | MR | Zbl

[5] G. Grätzer, Lattice Theory: Foundation, Springer Basel AG, Belin, 2011 | MR

[6] H. Mao, “On geometric lattices and matroids of arbitrary cardinality”, Ars Combinatoria, 81 (2006), 23–32 | MR | Zbl

[7] H. Mao, “Paving matroids of arbitrary cardinality”, Ars Combinatoria, 90 (2009), 245–256 | MR | Zbl

[8] H. Mao, “Characterizations of disconnected matroids”, Algebra Colloquium, 15:1 (2008), 129–134 | DOI | MR | Zbl

[9] H. Mao, G. Wang, “Some properties of base-matroids of aribitrary cardinality”, Rockey Mountain J. of Math., 40:1 (2010), 291–303 | DOI | MR | Zbl

[10] J. Oxley, Matroid Theory, Oxford University Press, New York, 2006 | MR | Zbl

[11] J. Oxley, “Infinite Matroid”, Matroid Application, ed. N. White, Cambridge Universtiy Press, Cambridge, 1992, 73–90 | DOI | MR

[12] D. J. A. Welsh, Matroid Theory, Academic Press Inc., London, 1976 | MR | Zbl