Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_1_a10, author = {A. Mukanov}, title = {Integrability of the {Fourier} transforms of $\alpha$-monotone functions}, journal = {Eurasian mathematical journal}, pages = {132--135}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a10/} }
A. Mukanov. Integrability of the Fourier transforms of $\alpha$-monotone functions. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 132-135. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a10/
[1] M. Dyachenko, E. Liflyand, S. Tikhonov, “Uniform convergence and integrability of Fourier integrals”, J. Math. Anal. Appl., 372 (2010), 328–338 | DOI | MR | Zbl
[2] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $\mathbb{R}^n$”, Journal d'Analyse Mathematique, 114:1 (2011), 99–120 | DOI | MR | Zbl
[3] A. N. Kopezhanova, E. D. Nursultanov, L.-E. Persson, “On inequalities for the Fourier transform of functions from Lorentz spaces”, Math. Notes, 90:5–6 (2011), 767–770 | DOI | MR | Zbl
[4] E. Liflyand, S. Tikhonov, “Extended solution of Boas' conjecture on Fourier transforms”, C.R. Math. Acad. Sci. Paris, 346 (2008), 1137–1142 | DOI | MR | Zbl
[5] E. D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sbornik Math., 189:3 (1998), 399–419 | DOI | MR | Zbl
[6] E. D. Nursultanov, “Net spaces and Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599 | MR | Zbl
[7] E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl
[8] Y. Sagher, “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54 (1976), 151–156 | DOI | MR | Zbl
[9] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993 | MR | Zbl