Modulus of supporting convexity and supporting smoothness
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 26-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the moduli of the supporting convexity and the supporting smoothness of a Banach space, which characterize the deviation of the unit sphere from an arbitrary supporting hyperplane. We show that the modulus of supporting smoothness, the Banaś modulus, and the modulus of smoothness are all equivalent at zero, the modulus of supporting convexity is equivalent at zero to the modulus of convexity. We prove a Day–Nordlander type result for these moduli.
@article{EMJ_2015_6_1_a1,
     author = {G. M. Ivanov},
     title = {Modulus of supporting convexity and supporting smoothness},
     journal = {Eurasian mathematical journal},
     pages = {26--40},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a1/}
}
TY  - JOUR
AU  - G. M. Ivanov
TI  - Modulus of supporting convexity and supporting smoothness
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 26
EP  - 40
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a1/
LA  - en
ID  - EMJ_2015_6_1_a1
ER  - 
%0 Journal Article
%A G. M. Ivanov
%T Modulus of supporting convexity and supporting smoothness
%J Eurasian mathematical journal
%D 2015
%P 26-40
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a1/
%G en
%F EMJ_2015_6_1_a1
G. M. Ivanov. Modulus of supporting convexity and supporting smoothness. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 26-40. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a1/

[1] J. Banaś, “On moduli of smoothness of Banach spaces”, Bull. Pol. Acad. Sci., Math., 34 (1986), 287–293 | MR | Zbl

[2] J. Banaś, K. Fra̧czek, “Deformation of Banach spaces”, Comment. Math. Univ. Carolinae, 34 (1993), 47–53 | MR | Zbl

[3] J. Banaś, A. Hajnosz, S. Wȩdrychowicz, “On convexity and smoothness of Banach space”, Comment. Math. Univ. Carolinae, 31:3 (1990), 445–452 | MR | Zbl

[4] J. Banaś, B. Rzepka, “Functions related to convexity and smoothness of normed spaces”, Rendiconti del Circolo Matematico di Palermo, 46:3 (1997), 395–424 | DOI | MR | Zbl

[5] M. Baronti, P. Papini, “Convexity, smoothness and moduli”, Nonlinear Analysis: Theory, Methods Applications, 70:6 (2009), 2457–2465 | DOI | MR | Zbl

[6] J. Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, 485, Springer-Verlag, Berlin–Heidelberg, 1975 | MR | Zbl

[7] G. Nordlander, “The modulus of convexity in normed linear spaces”, Arkiv för Matematik, 4:1 (1960), 15–17 | DOI | MR | Zbl