Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 6-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem is considered of constructing optimal (i.e. minimal) generalized Banach function space or optimal Banach function space, containing the given cone of nonnegative, decreasing functions in a weighted Lebesgue space.
@article{EMJ_2015_6_1_a0,
     author = {E. Bakhtigareeva},
     title = {Optimal {Banach} function space for a given cone of decreasing functions in~a~weighted $L_p$-space},
     journal = {Eurasian mathematical journal},
     pages = {6--25},
     year = {2015},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/}
}
TY  - JOUR
AU  - E. Bakhtigareeva
TI  - Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 6
EP  - 25
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/
LA  - en
ID  - EMJ_2015_6_1_a0
ER  - 
%0 Journal Article
%A E. Bakhtigareeva
%T Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space
%J Eurasian mathematical journal
%D 2015
%P 6-25
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/
%G en
%F EMJ_2015_6_1_a0
E. Bakhtigareeva. Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 6-25. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/

[1] E. G. Bakhtigareeva, M. L. Goldman, P. P. Zabreiko, “Optimal reconstruction of the generalized Banach function space for given cone of nonnegative functions”, Bulletin of TSU, 19:2 (2014), 316–330 (in Russian)

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Academic, New York, 1988 | MR | Zbl

[3] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of the positive operator on the cone of monotone functions”, Proceedings of the Steklov Institute of Mathematics, 210, 1995, 65–89 (in Russian) | MR | Zbl

[4] M. L. Goldman, P. P. Zabreiko, “Optimal reconstruction of the Banach function space for given cone of nonnegative functions”, Proceedings of the Steklov Institute of Mathematics, 284, 2014, 142–156 (in Russian) | DOI | Zbl

[5] M. L. Goldman, P. P. Zabreiko, “Optimal Banach function space for given cone of nonnegative decreasing functions”, Proceedings of the Institute of Mathematics of Belarus, 22:1 (2014), 24–34 (in Russian)

[6] M. L. Goldman, D. Haroske, “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, Journal of Approximation Theory, 172 (2013), 58–85 | DOI | MR | Zbl

[7] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Science, M., 1978 (in Russian) | MR

[8] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1990), 145–158 | MR | Zbl

[9] P. P. Zabreiko, “Nonlinear integral operators”, Proceedings of the seminar on functional analysis, 8, Voronezh, 1966, 3–148 (in Russian) | MR