Optimal Banach function space for a given cone of decreasing functions in~a~weighted $L_p$-space
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 6-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered of constructing optimal (i.e. minimal) generalized Banach function space or optimal Banach function space, containing the given cone of nonnegative, decreasing functions in a weighted Lebesgue space.
@article{EMJ_2015_6_1_a0,
     author = {E. Bakhtigareeva},
     title = {Optimal {Banach} function space for a given cone of decreasing functions in~a~weighted $L_p$-space},
     journal = {Eurasian mathematical journal},
     pages = {6--25},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/}
}
TY  - JOUR
AU  - E. Bakhtigareeva
TI  - Optimal Banach function space for a given cone of decreasing functions in~a~weighted $L_p$-space
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 6
EP  - 25
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/
LA  - en
ID  - EMJ_2015_6_1_a0
ER  - 
%0 Journal Article
%A E. Bakhtigareeva
%T Optimal Banach function space for a given cone of decreasing functions in~a~weighted $L_p$-space
%J Eurasian mathematical journal
%D 2015
%P 6-25
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/
%G en
%F EMJ_2015_6_1_a0
E. Bakhtigareeva. Optimal Banach function space for a given cone of decreasing functions in~a~weighted $L_p$-space. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 6-25. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a0/

[1] E. G. Bakhtigareeva, M. L. Goldman, P. P. Zabreiko, “Optimal reconstruction of the generalized Banach function space for given cone of nonnegative functions”, Bulletin of TSU, 19:2 (2014), 316–330 (in Russian)

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Academic, New York, 1988 | MR | Zbl

[3] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of the positive operator on the cone of monotone functions”, Proceedings of the Steklov Institute of Mathematics, 210, 1995, 65–89 (in Russian) | MR | Zbl

[4] M. L. Goldman, P. P. Zabreiko, “Optimal reconstruction of the Banach function space for given cone of nonnegative functions”, Proceedings of the Steklov Institute of Mathematics, 284, 2014, 142–156 (in Russian) | DOI | Zbl

[5] M. L. Goldman, P. P. Zabreiko, “Optimal Banach function space for given cone of nonnegative decreasing functions”, Proceedings of the Institute of Mathematics of Belarus, 22:1 (2014), 24–34 (in Russian)

[6] M. L. Goldman, D. Haroske, “Estimates for continuity envelopes and approximation numbers of Bessel potentials”, Journal of Approximation Theory, 172 (2013), 58–85 | DOI | MR | Zbl

[7] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Science, M., 1978 (in Russian) | MR

[8] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96 (1990), 145–158 | MR | Zbl

[9] P. P. Zabreiko, “Nonlinear integral operators”, Proceedings of the seminar on functional analysis, 8, Voronezh, 1966, 3–148 (in Russian) | MR