@article{EMJ_2014_5_4_a8,
author = {A. R. Aliev and E. H. Eyvazov},
title = {Description of the domain of definition of the electromagnetic {Schr\"odinger} operator in divergence form},
journal = {Eurasian mathematical journal},
pages = {134--138},
year = {2014},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/}
}
TY - JOUR AU - A. R. Aliev AU - E. H. Eyvazov TI - Description of the domain of definition of the electromagnetic Schrödinger operator in divergence form JO - Eurasian mathematical journal PY - 2014 SP - 134 EP - 138 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/ LA - en ID - EMJ_2014_5_4_a8 ER -
A. R. Aliev; E. H. Eyvazov. Description of the domain of definition of the electromagnetic Schrödinger operator in divergence form. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 134-138. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/
[1] Theoretical and Mathematical Physics, 166:2 (2011), 228–233 | DOI | DOI | MR | Zbl
[2] Russian Mathematical Surveys, 57:4 (2002), 641–692 | DOI | DOI | MR | Zbl
[3] T. Ikebe, T. Kato, “Uniqueness of the self-adjoint extension of singular elliptic differential operators”, Arch. Rational Mech. Anal., 9:1 (1962), 77–92 | DOI | MR | Zbl
[4] T. Ikebe, T. Tayoshi, “Wave and scattering operators for second-order elliptic operators in $R^3$”, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A, 4 (1968/1969), 483–496 | DOI | MR | Zbl
[5] S. A. Laptev, “Closure in the metric of the generalized Dirichlet integral”, Diff. Uravnenija, 7:4 (1971), 727–736 (in Russian) | MR | Zbl
[6] V. G. Maz'ya, “On a closure in the metric of generalized Dirichlet integral”, Zap. Nauchn. Sem. LOMI, 5, 1967, 192–195 (in Russian) | MR | Zbl
[7] Mir, Moscow, 1977 | MR | Zbl
[8] Mir, Moscow, 1978 | MR | Zbl
[9] N. N. Uraltseva, “Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients”, Zap. Nauchn. Sem. LOMI, 14, 1969, 288–294 (in Russian) | MR | Zbl