Description of the domain of definition of the electromagnetic Schr\"odinger operator in divergence form
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 134-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, conditions are found on the coefficients of the electromagnetic Schrödinger operator in divergence form that provide the coincidence of the domain of definition of the closure of the given operator of the second order in the Sobolev space in $n$-dimensional case.
@article{EMJ_2014_5_4_a8,
     author = {A. R. Aliev and E. H. Eyvazov},
     title = {Description of the domain of definition of the electromagnetic {Schr\"odinger} operator in divergence form},
     journal = {Eurasian mathematical journal},
     pages = {134--138},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - E. H. Eyvazov
TI  - Description of the domain of definition of the electromagnetic Schr\"odinger operator in divergence form
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 134
EP  - 138
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/
LA  - en
ID  - EMJ_2014_5_4_a8
ER  - 
%0 Journal Article
%A A. R. Aliev
%A E. H. Eyvazov
%T Description of the domain of definition of the electromagnetic Schr\"odinger operator in divergence form
%J Eurasian mathematical journal
%D 2014
%P 134-138
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/
%G en
%F EMJ_2014_5_4_a8
A. R. Aliev; E. H. Eyvazov. Description of the domain of definition of the electromagnetic Schr\"odinger operator in divergence form. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 134-138. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a8/

[1] Theoretical and Mathematical Physics, 166:2 (2011), 228–233 | DOI | DOI | MR | Zbl

[2] Russian Mathematical Surveys, 57:4 (2002), 641–692 | DOI | DOI | MR | Zbl

[3] T. Ikebe, T. Kato, “Uniqueness of the self-adjoint extension of singular elliptic differential operators”, Arch. Rational Mech. Anal., 9:1 (1962), 77–92 | DOI | MR | Zbl

[4] T. Ikebe, T. Tayoshi, “Wave and scattering operators for second-order elliptic operators in $R^3$”, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A, 4 (1968/1969), 483–496 | DOI | MR | Zbl

[5] S. A. Laptev, “Closure in the metric of the generalized Dirichlet integral”, Diff. Uravnenija, 7:4 (1971), 727–736 (in Russian) | MR | Zbl

[6] V. G. Maz'ya, “On a closure in the metric of generalized Dirichlet integral”, Zap. Nauchn. Sem. LOMI, 5, 1967, 192–195 (in Russian) | MR | Zbl

[7] Mir, Moscow, 1977 | MR | Zbl

[8] Mir, Moscow, 1978 | MR | Zbl

[9] N. N. Uraltseva, “Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients”, Zap. Nauchn. Sem. LOMI, 14, 1969, 288–294 (in Russian) | MR | Zbl