Normability and duality in the two-dimensional Lorentz spaces
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 79-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional Lorentz space $L^{p,q}_2$ is defined as a special case from the two-dimensional space $\Lambda^p_2(w)$ just as was done in the classical dimension one. The normability and duality of the space $L^{p,q}_2$ are discussed.
@article{EMJ_2014_5_4_a5,
     author = {P. Jain and S. Jain},
     title = {Normability and duality in the two-dimensional {Lorentz} spaces},
     journal = {Eurasian mathematical journal},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/}
}
TY  - JOUR
AU  - P. Jain
AU  - S. Jain
TI  - Normability and duality in the two-dimensional Lorentz spaces
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 79
EP  - 91
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/
LA  - en
ID  - EMJ_2014_5_4_a5
ER  - 
%0 Journal Article
%A P. Jain
%A S. Jain
%T Normability and duality in the two-dimensional Lorentz spaces
%J Eurasian mathematical journal
%D 2014
%P 79-91
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/
%G en
%F EMJ_2014_5_4_a5
P. Jain; S. Jain. Normability and duality in the two-dimensional Lorentz spaces. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 79-91. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/

[1] S. Barza, A. Kamińska, L. E. Persson, J. Soria, “Mixed norm and multidimensional Lorentz spaces”, Positivity, 10 (2006), 539–554 | DOI | MR | Zbl

[2] S. Barza, L. E. Persson, J. Soria, “Multidimensional rearrangement and Lorentz spaces”, Acta Math. Hungar., 104 (2004), 203–224 | DOI | MR | Zbl

[3] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988 | MR | Zbl

[4] A. P. Blozinski, “Multidimensional rearrangement and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263 (1981), 149–167 | DOI | MR | Zbl

[5] P. Jain, D. Verma, “Two-dimensional mean inequalities in certain Banach function spaces”, Real Analysis Exchange, 33 (2007–2008), 125–141 | MR

[6] E. Kristiansson, Decreasing rearrangement and Lorentz $L(p,q)$ spaces, Master's Thesis, Luleå University of Technology, 2002

[7] G. G. Lorentz, “Some new functional spaces”, Ann. of Math., 51 (1950), 37–55 | DOI | MR | Zbl