Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_4_a5, author = {P. Jain and S. Jain}, title = {Normability and duality in the two-dimensional {Lorentz} spaces}, journal = {Eurasian mathematical journal}, pages = {79--91}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/} }
P. Jain; S. Jain. Normability and duality in the two-dimensional Lorentz spaces. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 79-91. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a5/
[1] S. Barza, A. Kamińska, L. E. Persson, J. Soria, “Mixed norm and multidimensional Lorentz spaces”, Positivity, 10 (2006), 539–554 | DOI | MR | Zbl
[2] S. Barza, L. E. Persson, J. Soria, “Multidimensional rearrangement and Lorentz spaces”, Acta Math. Hungar., 104 (2004), 203–224 | DOI | MR | Zbl
[3] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988 | MR | Zbl
[4] A. P. Blozinski, “Multidimensional rearrangement and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263 (1981), 149–167 | DOI | MR | Zbl
[5] P. Jain, D. Verma, “Two-dimensional mean inequalities in certain Banach function spaces”, Real Analysis Exchange, 33 (2007–2008), 125–141 | MR
[6] E. Kristiansson, Decreasing rearrangement and Lorentz $L(p,q)$ spaces, Master's Thesis, Luleå University of Technology, 2002
[7] G. G. Lorentz, “Some new functional spaces”, Ann. of Math., 51 (1950), 37–55 | DOI | MR | Zbl