Recovering Sturm--Liouville operators on hedgehog-type graphs with general matching conditions
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 56-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study boundary value problems on hedgehog-type graphs for secondorder ordinary differential equations with general matching conditions. We establish properties of spectral characteristics and investigate the inverse spectral problem of recovering the coefficients of a differential equation from the spectral data. For this inverse problem we prove a uniqueness theorem and provide a procedure for constructing its solution.
@article{EMJ_2014_5_4_a3,
     author = {G. Freiling and V. Yurko},
     title = {Recovering {Sturm--Liouville} operators on hedgehog-type graphs with general matching conditions},
     journal = {Eurasian mathematical journal},
     pages = {56--69},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a3/}
}
TY  - JOUR
AU  - G. Freiling
AU  - V. Yurko
TI  - Recovering Sturm--Liouville operators on hedgehog-type graphs with general matching conditions
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 56
EP  - 69
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a3/
LA  - en
ID  - EMJ_2014_5_4_a3
ER  - 
%0 Journal Article
%A G. Freiling
%A V. Yurko
%T Recovering Sturm--Liouville operators on hedgehog-type graphs with general matching conditions
%J Eurasian mathematical journal
%D 2014
%P 56-69
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a3/
%G en
%F EMJ_2014_5_4_a3
G. Freiling; V. Yurko. Recovering Sturm--Liouville operators on hedgehog-type graphs with general matching conditions. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 56-69. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a3/

[1] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20 (2004), 647–672 | DOI | MR | Zbl

[2] R. Bellmann, K. Cooke, Differential-difference Equations, Academic Press, New York, 1963 | MR

[3] B. M. Brown, R. Weikard, “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[4] J. B. Conway, Functions of One Complex Variable, v. I, 2nd ed., Springer-Verlag, New York, 1995 | MR | Zbl

[5] A. M. Denisov, Elements of the theory of inverse problems, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1999 | MR | Zbl

[6] Theor. Math. Phys., 55 (1983), 485–492 | DOI | MR

[7] G. Freiling, V. A. Yurko, Inverse Sturm–Liouville Problems and their Applications, NOVA Science Publishers, New York, 2001 | MR | Zbl

[8] S. I. Kabanikhin, A. D. Satybaev, M. A. Shishlenin, Direct Methods of Solving Multi-dimensional Inverse Hyperbolic Problems, Inverse and Ill-posed Problems Series, VSP, 2005 | MR

[9] T. Kottos, U. Smilansky, “Quantum chaos on graphs”, Phys. Rev. Lett., 79 (1997), 4794–4797 | DOI

[10] J. E. Langese, G. Leugering, J. P. Schmidt, Modelling, analysis and control of dynamic elastic multi-link structures, Birkhäuser, Boston, 1994 | MR

[11] VNU Sci. Press, Utrecht, 1987 | MR | Zbl | Zbl

[12] Birkhäuser, 1986 | MR | Zbl | Zbl

[13] M. A. Naimark, Linear differential operators, 2nd ed., Nauka, Moscow, 1969 ; English transl. of 1st ed.: Part I: Elementary theory of linear differential operators, Ungar, New York, 1967 ; Part II: Linear differential operators in Hilbert space, Ungar, New York, 1968 | MR | Zbl | Zbl

[14] Yu. V. Pokornyi, A. V. Borovskikh, “Differential equations on networks (geometric graphs)”, J. Math. Sci., 119:6 (2004), 691–718 | DOI | MR | Zbl

[15] Yu. V. Pokornyi, V. Pryadiev, “The qualitative Sturm–Liouville theory on spatial networks”, J. Math. Sci., 119:6 (2004), 788–835 | DOI | MR | Zbl

[16] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000 | MR | Zbl

[17] VNU Scince Press, Utrecht, 1987 | MR

[18] A. Sobolev, M. Solomyak, “Schrödinger operator on homogeneous metric trees: spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–467 | DOI | MR | Zbl

[19] V. A. Yurko, “Integral transforms connected with discontinuous boundary value problems”, Integral Transforms and Special Functions, 10:2 (2000), 141–164 | DOI | MR | Zbl

[20] V. A. Yurko, Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, Amsterdam, 2000, 253 pp. | MR | Zbl

[21] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[22] V. A. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21 (2005), 1075–1086 | DOI | MR | Zbl

[23] V. A. Yurko, “Inverse problems for Sturm–Liouville operators on graphs with a cycle”, Operators and Matrices, 2:4 (2008), 543–553 | DOI | MR | Zbl

[24] V. A. Yurko, “Uniqueness of recovering differential operators on hedgehog-type graphs”, Advances in Dynamical Systems and Applications, 4:2 231–241 (2009) | MR | Zbl

[25] V. A. Yurko, “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl

[26] V. A. Yurko, Quasi-periodic boundary value problems with discontinuity conditions inside the interval, Schriftenreihe des Fachbereichs Mathematik, SM–DU–767, Universität Duisburg-Essen, 2013, 7 pp.